Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Data ; 4: 170048, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398334

RESUMEN

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

3.
Nanoscale ; 8(2): 965-72, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26660504

RESUMEN

Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ∼1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.

4.
Nanoscale ; 7(25): 11135-41, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26059169

RESUMEN

Pd-Cu2O core-shell nanocubes and truncated octahedra with six average sizes for each particle shape have been synthesized from 29 nm Pd nanocubes. The nanocubes have average edge lengths of 64-124 nm, while the truncated octahedra are 107-183 nm in the opposite tip distance. The core and shell composition and lattice orientation have been determined, showing the formation of single-crystalline Cu2O shells. The surface plasmon resonance (SPR) band from the Pd nanocrystal cores is barely visible. However, the Cu2O shells display facet-dependent optical properties. The Cu2O absorption band for smaller Pd-Cu2O cubes is consistently more red-shifted than somewhat larger Pd-Cu2O truncated octahedra. This work again shows that the observed facet-dependent optical phenomenon in metal-Cu2O core-shell nanocrystals is derived from the Cu2O shells. The use of 40 nm Pd cubes as cores gave uniform and size-tunable Pd-Cu2O nanocubes and truncated octahedra that display the Pd SPR band. The Pd SPR band is consistently located at 650 nm for Pd-Cu2O truncated octahedra, and 670 nm for the cubes despite large variation in the shell thickness. Both the Cu2O absorption and the Pd plasmonic band exhibit facet-dependent optical properties.

5.
Small ; 11(2): 195-201, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25115825

RESUMEN

Au-Cu2 O core-shell nanocubes, octahedra, and rhombic dodecahedra display facet-dependent optical properties. Furthermore, different-sized Au-Cu2 O octahedra with 58, 65, 68, and 73 nm octahedral gold cores clearly show a transition from the shell thickness-independent gold surface plasmon resonance band for octahedra with smaller gold cores to progressive red-shifts of the band with increasing shell thickness in octahedra with larger gold cores.

6.
Nanoscale ; 6(8): 4316-24, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24622737

RESUMEN

We fabricated Au-Cu2O core-shell octahedra, cuboctahedra, and nanocubes having sizes of 90-220 nm using 50 nm octahedral cores. The smaller particle sizes minimize the strong light scattering features from the Cu2O shells and enable the surface plasmon resonance (SPR) absorption band of the gold cores to be clearly identified. Beyond a lower shell thickness limit, the SPR band positions of the gold cores are independent of the shell thickness, but are strongly dependent on the exposed particle surfaces. The plasmonic band red-shifts from Au-Cu2O octahedra to cuboctahedra and nanocubes, and differs by as much as 26 nm between the octahedra and the nanocubes. The same facet-dependent optical effects were observed using larger octahedral gold cores and cubic gold cores. In contrast, simulation spectra show progressively red-shifted SPR band positions with increasing shell thickness. The Cu2O shells are also found to exhibit facet-dependent optical behavior. These nanocrystals can respond to changes in the solvent environment such as solvents with different refractive indices, indicating that the plasmonic field of the gold cores can extend beyond the particle surfaces despite the presence of thick shells. Plane-selective spectral responses to low concentrations of surfactants were also recorded.


Asunto(s)
Cobre/química , Oro/química , Nanocáscaras/química , Resonancia por Plasmón de Superficie , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA