Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356329

RESUMEN

Extreme climate events have increased in terms of their amplitudes, frequency and severity, greatly affecting ecosystem functions and the balance of the global carbon cycle. However, there are still uncertainties about how extreme climate change will affect tree growth. This study characterized the responses of tree growth to extreme climate on the northeastern Tibetan Plateau from 2000 to 2020. Meanwhile, a back propagation neural network was used to predict tree growth trends under two future emission scenarios from 2020 to 2050. This study revealed that: (1) the tree-ring width index (RWI) showed a decreasing trend (- 0.04/decade) in the eastern region, but the enhanced vegetation index (EVI) showed an increasing trend (0.05/decade) from 2000 to 2020. While both RWI and EVI in the middle and western regions showed increasing trends. (2) The responses of RWI and EVI to extreme climate were regionally asymmetric. In the eastern region, extreme precipitation inhibited tree radial growth, while extreme warm nights promoted tree canopy growth. In two other regions, both extreme precipitation and extreme warm nights promoted tree growth. (3) The model predicts that there was no significant change in RWI and EVI in the western region, but both RWI and EVI showed an increasing trend in the middle and eastern regions under the low emission scenario. Under the high emission scenario, the growth of tree stem and canopy in all three regions shows a general decreasing trend. The results of this study both improved the understanding of the differences in carbon allocation between tree stem (RWI) and canopy (EVI) and identified vulnerability thresholds for tree populations.

2.
Sci Total Environ ; 924: 171595, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492585

RESUMEN

Understanding the dynamics of tree recovery after drought is critical for predicting the state of tree growth in the context of future climate change. While there has been a great deal of researches showing that drought events can cause numerous significant negative effects on tree growth, the positive effects of post-drought wetting events on tree growth remain unclear. Therefore, we analyzed the effect of wet and dry events on the radial growth of trees in Central Asia using data on the width of tree rings. The results showed that 1) Drought is the main limiting factor for radial growth of trees in Central Asia, and that as the intensity and sensitivity of drought increases, tree resistance decreases and recovery rises, and more frequent droughts reduce tree resistance. 2) Tree radial growth varied significantly with wet and dry conditions, with wet events before and after drought events significantly enhancing tree radial growth. 3) When drought is followed by a wetting event, the relationship between tree resistance and recovery is closer to the "line of full resilience", with a significant increase in recovery, and compensatory growth is more likely to occur. Thus, wetting events have a significant positive effect on tree radial growth and are a key factor in rapid tree growth recovery after drought.


Asunto(s)
Cambio Climático , Sequías , Bosques
3.
Sci Total Environ ; 903: 166864, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683873

RESUMEN

Global climate change is exacerbating drought pressure on forests. However, the response patterns and physiological mechanisms of conifer species to drought, specifically in terms of radial growth, ecological resilience and soil water utilization, are not clearly understood. This study aims to quantify the effects of resilience on radial growth and identify the role of soil moisture utilization strategies in the resilience of species under drought intensities. We focus on two conifer species, Picea crassifolia (spruce) and Pinus tabuliformis (pine), located on the southern edge of the Tengger Desert in northwestern China. The dynamics of radial growth and ecological resilience were identified, and the seasonal growth rates of species based on soil water were simulated using the VS-oscilloscope model under varying drought stress. The results showed that spruce growth and recovery contributed by soil water were suppressed with frequent severe droughts, leading to a decline in growth (-0.5 cm2 year-1/10a, p < 0.05), despite its greater resistance to mild and moderate drought (-4.63 %). However, pine exhibited a stronger recovery (+40.25 %, p < 0.05) and higher variation in growth (-0.3 cm2 year-1/10a, p < 0.05) under soil moisture stress, despite its weaker resistance to drought (-23.53 %, p < 0.05). These findings provide insights into the growth, resilience, and water adaptation mechanisms of species under drought events, and theoretical support for the conservation and management of conifer diversity and forest ecosystem stability in climate-sensitive regions.

4.
PeerJ ; 6: e6000, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533302

RESUMEN

Bighead carps (Aristichthys nobilis) were divided into four groups with different feeding strategies: group A, nature live food only (fertiliser only, 200 g urea + 160 g ethylamine phosphate + 250 g Huangjintai bio-fertiliser); group B, nature live food + 1/2 formulated feed; group C, nature live food + formulated feed; and group D, formulated feed only. The intestinal microbiomes of the different groups were compared through the Illumina MiSeq sequencing of the bacterial 16S rRNA gene. The specific growth rate (SGR), survival and blood biochemical factors of the fish were also investigated. Results showed that feeding treatment influenced the intestinal communities in the fish. In specific, more bacterial phyla dominated in groups A and B (phyla Bacteroidetes, Fusobacteria, Firmicutes and Proteobacteria in group A, phyla Proteobacteria and Fusobacteria in group B) than in groups C and D (phylum Proteobacteria). The diversity was also lower in groups C and D than in groups A and B. Unweighted pair-group method analysis revealed a clear difference in intestinal microbiota among the different feeding treatments. No difference in survival rate was found among the treatment groups, but the SGR was significantly higher (P < 0.01) in groups B, C and D than in group A. Functional analysis showed that the intestinal bacteria correlated with fish glucose metabolism in group A but with lipid metabolic activity in groups B, C and D. In summary, the intestinal microbiomes and their potential functions vary in bighead carp under different feeding treatments. This study provides new insights into the gut microbiomes of filter-feeding and formulated diet-fed fish.

5.
J Genet ; 97(1): 127-136, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29666332

RESUMEN

To elucidate the role of amh and foxl2 in sex differentiation of the teleost fish Schizothorax kozlovi, the full-length cDNAs were cloned from the mature testis and ovary by rapid amplification of cDNA ends (RACE), and their relative mRNA expression levels were determined by quantitative real-time polymerase chain reaction among tissues and temperature groups. The complete amh and foxl2 cDNAs of S. kozlovi were 2060 bp and 1750 bp, which encoded 568 and 306 amino acids, respectively. The amh were expressed only in gonads, while foxl2 was expressed in the gills, brain and gonads, both exhibiting relatively high tissue specificity. The amh exhibited sex-specific expression pattern in the gonads. No sex differences in the foxl2 expression were observed in the brain and gonads, but significant sex differences were found in the gills. No significant differences were found in the foxl2 expression, from the larval to the juvenile stage, and also between different temperature groups. However, significant differences were found in the expression levels of amh from the larval (12-63 days posthatching (dph)) to the juvenile stage (190 dph), and also among the 18°C and 10°C groups at 31 dph. This result suggested that amh plays an important role in male sex differentiation of S. kozlovi during the early developmental stage, but no similar effect was observed in foxl2.


Asunto(s)
Cyprinidae/crecimiento & desarrollo , Cyprinidae/genética , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Temperatura , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Hibridación in Situ , Masculino , Especificidad de Órganos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA