Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 109017, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121518

RESUMEN

Cadmium (Cd) contamination of soil may lead to Cd stress for plants, which significantly hinders plant growth and development, posing a risk to human health through the consumption of Cd-contaminated foods. Watermelon (Citrullus lanatus), a widely consumed fruit, is particularly affected by Cd stress globally, yet the mechanisms underlying its response are not well understood. Here, we subjected watermelon seedlings to simulated Cd stress treatment and explored the physiological, transcriptomic, and metabolic response. Our findings revealed that Cd stress treatment led to increased accumulation of reactive oxygen species (ROS) in watermelon leaves. Transcriptome sequencing unveiled a multitude of osmotic and oxidative stress-responsive genes, including peroxidase (POD), MYB, voltage-dependent anion channel (SLAC1), and ABC transporter. KEGG enrichment analysis highlighted the predominant enrichment of Cd stress-responsive genes in pathways such as glutathione (GSH) metabolism, MAPK signaling, and biosynthesis of secondary metabolites. Within the GSH metabolism pathway, several glutathione S-transferase (GST) genes were up-regulated, alongside phytochelatin synthetase (PCS) genes involved in phytochelatin synthesis. In the MAPK signaling pathway, genes associated with ABA and ethylene signal transduction showed up-regulation following Cd stress. Metabolomic analysis demonstrated that Cd stress enhanced the production of amino acids, phenolamines, and esters. Overall, our study elucidates that watermelon responds to Cd stress by activating its antioxidant system, GSH metabolism pathway, MAPK signal pathway, and biosynthesis of key metabolites. These findings offer valuable insights for the remediation of heavy metal pollution in soil affecting plant life.

2.
PLoS One ; 18(8): e0290853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647311

RESUMEN

Microbes are an important part of the vineyard ecosystem, which significantly influence the quality of grapes. Previously, we identified a bud mutant variety (named 'Fengzao') from 'Kyoho' grapes. The variation of microbial communities in grape and its bud mutant variety has not been studied yet. So, in this study, with the samples of both 'Fengzao' and 'Kyoho', we conducted high-throughput microbiome sequencing and investigated their microbial communities in different tissues. Obvious differences were observed in the microbial communities between 'Fengzao' and 'Kyoho'. The fruit and the stem are the tissues with relatively higher abundance of microbes, while the leaves contained less microbes. The fruit and the stem of 'Kyoho' and the stem of 'Fengzao' had relatively higher species diversity based on the alpha diversity analysis. Proteobacteria, Enterobacteriaceae and Rhodobacteraceae had significantly high abundance in 'Fengzao'. Firmicutes and Pseudomonas were highly abundant in the stems of 'Kyoho', and family of Spirochaetaceae, Anaplasmataceae, Chlorobiaceae, and Sphingomonadaceae, and genera of Spirochaeta, Sphingomonas, Chlorobaculum and Wolbachia were abundant in the fruits of 'Kyoho'. These identified microbes are main components of the microbial communities, and could be important regulators of grapevine growth and development. This study revealed the differences in the microbial compositions between 'Kyoho' and its bud mutant, and these identified microbes will be significant resources for the future researches on the quality regulation and disease control of grapevines.


Asunto(s)
Anaplasmataceae , Chlorobi , Microbiota , Vitis , Microbiota/genética , Enterobacteriaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA