Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.921
Filtrar
1.
Nat Nanotechnol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951595

RESUMEN

The clustering of death receptors (DRs) at the membrane leads to apoptosis. With the goal of treating tumours, multivalent molecular tools that initiate this mechanism have been developed. However, DRs are also ubiquitously expressed in healthy tissue. Here we present a stimuli-responsive robotic switch nanodevice that can autonomously and selectively turn on the display of cytotoxic ligand patterns in tumour microenvironments. We demonstrate a switchable DNA origami that normally hides six ligands but displays them as a hexagonal pattern 10 nm in diameter once under higher acidity. This can effectively cluster DRs and trigger apoptosis of human breast cancer cells at pH 6.5 while remaining inert at pH 7.4. When administered to mice bearing human breast cancer xenografts, this nanodevice decreased tumour growth by up to 70%. The data demonstrate the feasibility and opportunities for developing ligand pattern switches as a path for targeted treatment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38952049

RESUMEN

The E-proteinoid 3 receptor (PTGER3), a member of the prostaglandin E2 (PGE2) subtype receptor, belongs to the G-protein-coupled superfamily of receptors. Animal studies have demonstrated its involvement in salt sensitivity by regulating sodium reabsorption. This study aimed to investigate the association between genetic variants of PTGER3 and salt sensitivity, longitudinal blood pressure (BP) changes, and the incidence of hypertension in Chinese adults. A chronic salt intake intervention was conducted involving 514 adults from 124 families in the 2004 Baoji Salt-Sensitivity Study Cohort in northern China. These participants followed a 3-day regular baseline diet, followed by a 7-day low-salt diet (3.0 g/d) and a 7-day high-salt diet (18 g/d), and were subsequently followed for 14 years. The findings revealed a significant relationship between the single nucleotide polymorphism (SNP) rs17482751 of PTGER3 and diastolic blood pressure (DBP) response to high salt intervention. Additionally, SNPs rs11209733, rs3765894, and rs2268062 were significantly associated with longitudinal changes in systolic blood pressure (SBP), DBP, and mean arterial pressure (MAP) during the 14-year follow-up period. SNP rs6424414 was significantly associated with longitudinal changes in DBP over 14 years. Finally, SNP rs17482751 showed a significant correlation with the incidence of hypertension over 14 years. These results emphasize the significant role of PTGER3 gene polymorphism in salt sensitivity, longitudinal BP changes, and the development of hypertension in the Chinese population.

3.
Biomark Med ; : 1-11, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982729

RESUMEN

Aim: Torquetenovirus (TTV) was a promising biomarker for immunity, while lung regional TTV for evaluating the opportunistic infection among immunocompromised hosts (ICH) was unclear. Materials & methods: In the ICH and non-ICH populations, we compared the susceptibility to opportunistic infections, clinical severity and the prognosis between subgroups, respectively. Results: ICH with detectable bronchoalveolar lavage fluid (BALF)-TTV were more susceptible to lung aspergillosis and Mycobacterium infections. Furthermore, our data demonstrated that the ICH cohort with detectable BALF-TTV represented a higher clinical severity and a worse prognosis, while the above findings were not found in the non-ICH population. Conclusion: Our findings demonstrated that the BALF-TTV could act as an effective predictor for opportunistic infection for ICH that complemented the CD4+ T cell counts.


[Box: see text].

4.
Elife ; 132024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995840

RESUMEN

Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Proteínas de Unión al ARN , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Femenino , FN-kappa B/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Empalme Alternativo , Metástasis de la Neoplasia , Transducción de Señal , Animales , Regulación Neoplásica de la Expresión Génica , Ratones
5.
Mater Today Bio ; 27: 101118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38975238

RESUMEN

Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.

6.
Clin Nucl Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968571

RESUMEN

ABSTRACT: Primary urethral urothelial carcinoma is a rare aggressive tumor with a high propensity for local invasion and regional and distal metastases. We describe the usefulness of FDG PET/CT in management of a patient with primary urethral urothelial carcinoma. FDG PET/CT at initial staging showed FDG-avid primary tumor and lymph node metastasis of the left groin, and mild or no activity of the lung metastases due to small size. FDG PET/CT after 4 cycles of chemotherapy showed progression of the primary tumor and lung metastases, partial response of the left inguinal lymphadenopathy, and multiple new sites of FDG-avid metastases.

7.
Clin Nucl Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968570

RESUMEN

ABSTRACT: We describe contrast-enhanced CT and FDG PET/CT findings in a case of thoracic SMARCA4-deficient undifferentiated tumor with extensive pleural involvement and mediastinal lymph node metastases. Contrast-enhanced CT showed multiple enhancing right-sided pleural masses and soft tissue plaques and enlarged mediastinal lymph nodes. The pleural lesions and mediastinal lymph nodes showed intense FDG uptake mimicking malignant pleural mesothelioma with mediastinal lymph node metastases.

8.
ACS Med Chem Lett ; 15(7): 1017-1025, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39015275

RESUMEN

We employ a combination of accelerated molecular dynamics and machine learning to unravel how the dynamic characteristics of CBL-B and C-CBL confer their binding affinity and selectivity for ligands from subtle structural disparities within their binding pockets and dissociation pathways. Our predictive model of dissociation rate constants (k off) demonstrates a moderate correlation between predicted k off and experimental IC50 values, which is consistent with experimental k off and τ-random accelerated molecular dynamics (τRAMD) results. By employing a linear regression of dissociation trajectories, we identified key amino acids in binding pockets and along the dissociation paths responsible for activity and selectivity. These amino acids are statistically significant in achieving activity and selectivity and contribute to the primary structural discrepancies between CBL-B and C-CBL. Moreover, the binding free energies calculated from molecular mechanics with generalized Born and surface area solvation (MM/GBSA) highlight the ΔG difference between CBL-B and C-CBL. The k off prediction, together with the key amino acids, provides important guides for designing drugs with high selectivity.

9.
Angew Chem Int Ed Engl ; : e202409286, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018503

RESUMEN

Rechargeable Mg batteries are a promising energy storage technology to overcome the limitations inherent to Li ion batteries. A critical challenge in advancing Mg batteries is the lack of suitable cathode materials. In this work, we report a cathode design that incorporates S functionality into two-dimensional metal-organic-frameworks (2D-MOFs). This new cathode material enables good Mg2+ storage capacity and outstanding cyclability. It was found that upon the initial Mg2+ insertion and disinsertion, there is an apparent structural transformation that crumbles the layered 2D framework, leading to amorphization. The resulting material serves as the active material to host Mg2+ through reduction and/or oxidation of S and, to a limited extent, O. The reversible nature of S and O redox chemistry was confirmed by spectroscopic characterizations and validated by density functional calculations. Importantly, during the Mg2+ insertion and disinsertion process, the 2D nature of the framework was maintained, which plays a key role in enabling the high reversibility of the MOF cathode.

10.
J Pharm Biomed Anal ; 249: 116351, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018720

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.

11.
Heliyon ; 10(12): e33265, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022107

RESUMEN

Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.

12.
J Phys Chem A ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024177

RESUMEN

N-heterocyclic carbene (NHC)-bound ortho-quinodimethane, served as a nucleophile, has occupied an important position for constructing various all-carbon or heterocyclic compounds and attracted increasing attention for the functionalization of benzylic carbon of aromatic aldehydes, whereas the mechanistic studies on the generation and transformations of dienolate intermediate are rare. In the present study, the mechanism of activation/transformation of aldehyde catalyzed by NHC was theoretically studied using the density functional theory (DFT) method. Based on the calculations, the nucleophilic addition process is the stereoselectivity-determining step with RS-configured product being generated preferentially. Furthermore, non-covalent index (NCI) and atoms-in-molecules (AIM) analyses have been performed to disclose the origin of stereoselectivity, by which the larger number and stronger weak interactions are the key for stabilizing the low-energy transition state and thus leading to the stereoselectivity inducing.

13.
J Chem Theory Comput ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024317

RESUMEN

Electron density-based implicit solvation models are a class of techniques for quantifying solvation effects and calculating free energies of solvation without an explicit representation of solvent molecules. Integral to the accuracy of solvation modeling is the proper definition of the solvation shell separating the solute molecule from the solvent environment, allowing for a physical partitioning of the free energies of solvation. Unlike state-of-the-art implicit solvation models for molecular quantum chemistry calculations, e.g., the solvation model based on solute electron density (SMD), solvation models for systems under periodic boundary conditions with plane-wave (PW) basis sets have been limited in their accuracy. Furthermore, a unified implicit solvation model with both homogeneous solution-phase and heterogeneous interfacial structures treated on equal footing is needed. In order to address this challenge, we developed a high-accuracy solvation model for periodic PW calculations that is applicable to molecular, ionic, interfacial, and bulk-phase chemistry. Our model, PW-SMD, is an extension of the SMD molecular solvation model to periodic systems in water. The free energy of solvation is partitioned into the electrostatic and cavity-dispersion-solvent structure (CDS) contributions. The electrostatic contributions of the solvation shell surrounding solute structures are parametrized based on their geometric and physical properties. In addition, the nonelectrostatic contribution to the solvation energy is accounted for by extending the CDS formalism of SMD to incorporate periodic boundary conditions. We validate the accuracy and robustness of our solvation model by comparing predicted solvation free energies against experimental data for molecular and ionic systems, carved-cluster composite energetic models of solvated reaction energies and barriers on surface systems, and deep-learning-accelerated ab initio molecular dynamics (AIMD). Our developed periodic implicit solvation model shows significantly improved accuracy compared to previous work (namely, solvation models in aqueous solution) and can be applied to simulate solvent effects in a wide range of surface and crystalline materials.

14.
Org Lett ; 26(28): 6041-6046, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38973673

RESUMEN

A hypervalent iodine-mediated intermolecular α-umpolung reaction between α-aryl- or alkyl-substituted amides and benzotriazoles or purine derivatives as N-centered nucleophiles has been established. The reaction involves sequential intra/intermolecular oxidative C-N couplings in a controlled manner, affording tetrasubstituted 3,3'-oxindoles in moderate to good yields. This approach efficiently addresses the challenges in constructing tetrasubstituted carbon centers via α-umpolung functionalizations of carbonyl compounds and serves as a new strategy for synthesizing biologically important 3,3'-disubstituted oxindoles.

16.
Biol Sport ; 41(3): 129-135, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952900

RESUMEN

The impact of two priming exercise protocols using traditional (TS) or cluster-set (CS) arrangements on explosive performance 6 hours later were examined. Sixteen male collegiate athletes performed three testing sessions (one baseline without any prior exercise in the morning and two experimental sessions) separated by 72 hours. Participants completed two morning (9-11 am) priming protocols in a randomized order, either using a TS (no rest between repetitions) or CS (30 seconds of rest between repetitions) configuration. The protocols consisted of 3 sets × 3 repetitions of barbell back squat at 85% of 1 repetition maximum, with 4 minutes of rest between sets. In the afternoon (3-5 pm) of each trial, after a 6-hour rest period, a physical test battery was conducted that replicated baseline testing, including countermovement jump, 20-meter straight-line sprint, and T-test abilities. Across both conditions, participants exhibited increased countermovement jump height, 20-meter sprint time and T-test time compared to baseline (P < 0.05). Improvements in countermovement jump height (+4.4 ± 5.4%; P = 0.008) and 20-meter sprint time (+1.3 ± 1.7%; P = 0.022), but not T-test time (+1.1 ± 3.3%; P = 0.585), were significantly greater for CS than TS. In conclusion, compared to a traditional set arrangement, a morning-based priming protocol using a cluster-set configuration led to superior explosive performance benefits in the afternoon.

17.
Langmuir ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041610

RESUMEN

The theory of heat conduction paths has been widely recognized and widely studied in the research about the thermal conductivity of thermal conductive polymer composites at present. Encapsulating polymer pellets with thermally conductive fillers and processing them into thermally conductive polymer composites is a simple and effective method for constructing heat conduction paths. It is meaningful to investigate the related heat conduction mechanism of this method. Otherwise, this approach can significantly preserve the performance of the polymer substrate, making it highly valuable for practical material applications. In this work, polyethylene-octene elastomer (POE) pellets were encapsulated with thermal conductive fillers by physical absorption. Subsequently, the composite films containing heat conduction paths were fabricated using the encapsulated POE pellets through a heating press. Alumina (Al2O3), boron nitride (BN), and alumina/boron nitride hybrid (Al2O3/BN) fillers were used to prepare Al2O3@POE, BN@POE, and BN/Al2O3@POE composite films to investigate the influence of filler shapes on heat conduction path construction. The influence of the constitute and density of heat conduction paths on the thermal conductivity of composite films was analyzed by infrared thermal imaging, finite element analysis, and thermal resistance theory in detail. Owing to the reserved good adhesion and flexibility of the POE substrate, the composite films could be directly used as thermal interface materials for chip cooling, which presented a good heat dissipation effect. Furthermore, a series of integrated composite materials were prepared by the combination of encapsulated pellets with various functional films (copper foil, aluminum foil, and graphite sheet) through a one-pot heating press, exhibiting a good electromagnetic shielding effect. The performance of the composites and the corresponding preparation method demonstrate the strong significance of this research for practical applications.

18.
Sci Bull (Beijing) ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39025777

RESUMEN

This was a single-arm, multicenter, open-label phase I trial. Lentiviral vectors (LV) carrying the ABCD1 gene (LV-ABCD1) was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy (CCALD), and multi-site injection was performed. The injection dose increased from 200 to 1600 µL (vector titer: 1×109 TU/mL), and the average dose per kilogram body weight ranges from 8 to 63.6 µL/kg. The primary endpoint was safety, dose-exploration and immunogenicity and the secondary endpoint was initial evaluation of efficacy and the expression of ABCD1 protein. A total of 7 patients participated in this phase I study and were followed for 1 year. No injection-related serious adverse event or death occurred. Common adverse events associated with the injection were irritability (71%, 5/7) and fever (37.2 â„ƒ-38.5 â„ƒ, 57%, 4/7). Adverse events were mild and self-limited, or resolved within 3 d of symptomatic treatment. The maximal tolerable dose is 1600 µL. In 5 cases (83.3%, 5/6), no lentivirus associated antibodies were detected. The overall survival at 1-year was 100%. The ABCD1 protein expression was detected in neutrophils, monocytes and lymphocytes. This study suggests that the intracerebral injection of LV-ABCD1 for CCALD is safe and can achieve successful LV transduction in vivo; even the maximal dose did not increase the risk of adverse events. Furthermore, the direct LV-ABCD1 injection displayed low immunogenicity. In addition, the effectiveness of intracerebral LV-ABCD1 injection has been preliminarily demonstrated while further investigation is needed. This study has been registered in the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, registration number: ChiCTR1900026649).

19.
J Med Chem ; 67(14): 11751-11768, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38989847

RESUMEN

Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound 37 exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines. It induced dose-dependent MYC degradation in cells with degradation observed at the concentration as low as 1.0 µM. Meanwhile, its direct suppression of MYC function was confirmed by the capability to inhibit the binding of MYC/MYC-associated protein X (MAX) heterodimer to DNA consensus sequence, induce MYC thermal instability, and disturb MYC/MAX interaction. Moreover, 37 demonstrated enhanced therapeutic efficacy over MYCi975 in a mouse allograft model of prostate cancer. Overall, 37 deserves further development for exploring MYC-targeting cancer therapeutics.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas c-myc , Pirazoles , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Masculino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteolisis/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Relación Estructura-Actividad , Unión Proteica , Ratones Desnudos
20.
J Med Chem ; 67(14): 12118-12142, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38996194

RESUMEN

Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Compuestos Heterocíclicos , Katanina , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Katanina/metabolismo , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Línea Celular Tumoral , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ratones Desnudos , Descubrimiento de Drogas , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Ensayos de Selección de Medicamentos Antitumorales , Ratones Endogámicos BALB C , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...