Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(21): 31224-31239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632197

RESUMEN

Driven by climate change and human activity, Sargassum blooming rates have intensified, producing copious amount of the invasive, pelagic seaweed across the Caribbean and Latin America. Battery recycling and lead-smelter wastes have heavily polluted the environment and resulted in acute lead poisoning in children through widespread heavy metal contamination particular in East Trinidad. Our study details a comprehensive investigation into the use of Sargassum (S. natans), as a potential resource-circular feedstock for the synthesis of calcium alginate beads utilized in heavy metal adsorption, both in batch and column experiments. Here, ionic cross-linking of extracted sodium alginate with calcium chloride was utilized to create functional ion-exchange beads. Given the low quality of alginates extracted from Sargassum which produce poor morphological beads, composite beads in conjunction with graphene oxide and acrylamide were used to improve fabrication. Stand-alone calcium alginate beads exhibited superior Pb2+ adsorption, with a capacity of 213 mg g-1 at 20 °C and pH 3.5, surpassing composite and commercial resins. Additives like acrylamide and graphene oxide in composite alginate resins led to a 21-40% decrease in Pb2+ adsorption due to reduced active sites. Column operations confirmed Alginate systems' practicality, with 20-24% longer operating times, 15 times lower adsorbent mass on scale-up and 206% smaller column diameters compared to commercial counterparts. Ultimately, this study advocates for Sargassum-based Alginate ion-exchange beads as a bio-based alternative in Trinidad and developing nations for dealing with heavy metal ion waste, offering superior heavy metal adsorption performance and supporting resource circularity.


Asunto(s)
Alginatos , Resinas de Intercambio Iónico , Plomo , Sargassum , Sargassum/química , Alginatos/química , Adsorción , Plomo/química , Resinas de Intercambio Iónico/química
2.
Data Brief ; 31: 105837, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32637470

RESUMEN

This article presents data associated with the extraction of sodium alginate from waste Sargassum seaweed in the Caribbean utilizing an optimization approach using Response Surface Methodology [1]. A Box-Behnken (BBD) Response Surface Methodology using Design Expert 10.0.3 software on the alkaline extraction process was used. Data consists of the effects of 4 process variables (temperature, extraction time, alkali concentration and excess volume of alkali: dried seaweed) on the yield of sodium alginate. The model was validated, and extracts were characterization using High Performance Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The data illustrates the applicability of our model in potentially valorizing this waste product into a valuable resource. Furthermore, our methodology can be applied to other macroalgae for efficient extraction of sodium alginate of commercial quality.

3.
Data Brief ; 30: 105593, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382606

RESUMEN

This article presents data affiliated with life cycle inventories, environmental impact and operational sustainability used in, the influence of raw material availability and utility power consumption on the sustainability of the ammonia process [1]. Scenario specific operating conditions were used to simulate the ammonia process based on unique constraints occurring within the Trinidad and Tobago energy sector. The data was collected using AspenⓇ Plus simulations and validated against plant operating data. The data consists of an economic cost evaluation as well as environmental impact using the CML-IA Baseline midpoint approach. The data was derived from life cycle inventories aligned to input/output material and energy flows within the ammonia process as well as life cycle assessment databases utilizing Ecoinvent v3.4. The data can be applied to the wider ammonia supply chain, aiding in achieving greater sustainable development within ammonia-based process industries.

4.
Adv Colloid Interface Sci ; 275: 102079, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31787216

RESUMEN

Colloidal Liquid Aphrons (CLAs) are micron sized discrete spherical solvent droplets formed by the dispersion of polyaphrons into a bulk aqueous phase at a low phase volume ratio where they can be kept homogenously suspended with only minimal agitation. CLAs have high stability due to the presence of a surfactant 'shell' surrounding the solvent core, and possess large surface areas per unit volume for mass transfer due to their small size. Therefore, CLAs are well suited for applications in pre-dispersed solvent extraction (PSE), enzyme immobilization, and have the potential to be used as a drug delivery system. Using PSE, CLAs have been used to remove metals such as Ni2+, Cu2+, Fe3+, Cr3+ and Mg2+ from dilute streams, separate organic dyes such as Yellow 1 from wastewater, extract succinic and lactic acid, reactively extract phenylalanine, and separate suspensions. CLAs have also been used to immobilize enzymes such as lipase, lysozyme and albumins with cases of superactivity being reported due to the influence of surfactant and solvent interactions with the enzyme. Furthermore, due to their similarity to current drug delivery systems such as microemulsions and hydrogels, and other advantages, CLA systems have the potential to be adapted for drug delivery systems also. This article provides a complete list of the current applications of Colloidal Liquid Aphrons (CLAs) in PSE and enzyme immobilization, and also presents insight into how CLAs can be utilized as a drug delivery method in the future. Finally, this review ends by summarizing potentially interesting research areas to pursue in this field.


Asunto(s)
Albúminas/química , Sistemas de Liberación de Medicamentos , Enzimas Inmovilizadas/química , Lipasa/química , Muramidasa/química , Coloides/química , Coloides/aislamiento & purificación , Coloides/metabolismo , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Muramidasa/metabolismo , Tamaño de la Partícula , Solventes/química , Propiedades de Superficie
5.
Biotechnol Bioeng ; 116(12): 3168-3178, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31449332

RESUMEN

Research within the field of colloidal liquid aphrons (CLAs) for enzyme immobilization has often used ionic surfactants for the retention of enzymes. Although these charged interactions allow for enhanced immobilization, they can often lead to denaturation of enzyme activity, and even release of the protein. Sodium alginate has been used in drug delivery applications due to its low toxicity and charged interactions that allow for encapsulation. Hence, alginate systems can be used as an alternative to ionic surfactants in CLA immobilization. This paper presents, for the first time, the use of sodium alginate as potential ligand for enhanced CLA immobilization. The use of five model proteins; lysozyme, bovine serum albumin, ovalbumin, insulin, and α-chymotrypsin, of various pIs and hydrophobicities, showed the relevance of electrostatic interactions in promoting binding with sodium alginate when the pH < pI, with 100% immobilization attributed to alginate incorporated CLAs over general nonionic formulations. Furthermore, above their pI, >80% protein recovery was observed, with activity and conformation comparable to their native counterparts. Finally, the use of proteolysis showed that as the degree of ionic bonding increased between the protein and sodium alginate, the degree of protease resistance decreased due to conformational changes experienced during binding.


Asunto(s)
Alginatos/química , Sistemas de Liberación de Medicamentos , Proteínas Inmovilizadas/química , Microburbujas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA