Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Psychiatry ; 20(11): 1406-19, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25560763

RESUMEN

Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here, we find that mice with a mutation in the circadian Clock gene (ClockΔ19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood-cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviors in ClockΔ19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behavior. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder.


Asunto(s)
Potenciales de Acción/genética , Afecto/fisiología , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Neuronas Dopaminérgicas/fisiología , Mutación/genética , Potenciales de Acción/efectos de los fármacos , Adaptación Ocular/efectos de los fármacos , Adaptación Ocular/genética , Animales , Línea Celular Transformada , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Preferencias Alimentarias/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Ratas , Natación , Factores de Tiempo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/citología
3.
Genes Brain Behav ; 13(1): 38-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23682971

RESUMEN

Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders.


Asunto(s)
Encéfalo/fisiopatología , Conectoma/métodos , Trastornos del Humor/genética , Optogenética/métodos , Animales , Encéfalo/metabolismo , Dopamina/genética , Dopamina/metabolismo , Humanos , Trastornos del Humor/metabolismo , Trastornos del Humor/fisiopatología , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...