Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(22): 226702, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877951

RESUMEN

Antiferromagnets are normally thought of as materials with compensated magnetic sublattices. This adds to their technological advantages but complicates readout of the antiferromagnetic state. We demonstrate theoretically the existence of a Dzyaloshinskii-Moriya interaction (DMI), which is determined by the magnetic symmetry classes of Cr_{2}O_{3} surfaces with an in-plane magnetic easy axis. The DMI explains a previously predicted out-of-plane magnetization at the nominally compensated surfaces of chromia, leading to a surface-localized canted ferrimagnetism. This is in agreement with magnetotransport measurements and with density functional theory predictions that further allow us to quantify the strength of DMI. The temperature dependence of the transversal resistance for these planes shows distinct behavior in comparison with that of the Cr_{2}O_{3} c plane, which we attribute to the influence of DMI. Our Letter provides a framework to analyze surface-driven phenomena in antiferromagnets, and motivates the use of nominally compensated chromia surfaces for antiferromagnetic spintronics and magnonics.

2.
Phys Chem Chem Phys ; 26(15): 11789-11797, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38566591

RESUMEN

The crystal structures of ANb3Br7S (A = Rb and Cs) have been refined by single crystal X-ray diffraction, and are found to form highly anisotropic materials based on chains of the triangular Nb3 cluster core. The Nb3 cluster core contains seven valence electrons, six of them being assigned to Nb-Nb bonds within the Nb3 triangle and one unpaired d electron. The presence of this surplus electron gives rise to the formation of correlated electronic states. The connectivity in the structures is represented by one-dimensional [Nb3Br7S]- chains, containing a sulphur atom capping one face (µ3) of the triangular niobium cluster, which is believed to induce an important electronic feature. Several types of studies are undertaken to obtain deeper insight into the understanding of this unusual material: the crystal structure, morphology and elastic properties are analysed, as well the (photo-)electrical properties and NMR relaxation. Electronic structure (DFT) calculations are performed in order to understand the electronic structure and transport in these compounds, and, based on the experimental and theoretical results, we propose that the electronic interactions along the Nb chains are sufficiently one-dimensional to give rise to Luttinger liquid (rather than Fermi liquid) behaviour of the metallic electrons.

3.
J Phys Condens Matter ; 36(15)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38171024

RESUMEN

We establish the sign of the linear magnetoelectric (ME) coefficient,α, in chromia, Cr2O3. Cr2O3is the prototypical linear ME material, in which an electric (magnetic) field induces a linearly proportional magnetization (polarization), and a single magnetic domain can be selected by annealing in combined magnetic (H) and electric (E) fields. Opposite antiferromagnetic (AFM) domains have opposite ME responses, and which AFM domain corresponds to which sign of response has previously been unclear. We use density functional theory (DFT) to calculate the magnetic response of a single AFM domain of Cr2O3to an applied in-plane electric field at zero kelvin. We find that the domain with nearest neighbor magnetic moments oriented away from (towards) each other has a negative (positive) in-plane ME coefficient,α⊥, at zero kelvin. We show that this sign is consistent with all other DFT calculations in the literature that specified the domain orientation, independent of the choice of DFT code or functional, the method used to apply the field, and whether the direct (magnetic field) or inverse (electric field) ME response was calculated. Next, we reanalyze our previously published spherical neutron polarimetry data to determine the AFM domain produced by annealing in combinedEandHfields oriented along the crystallographic symmetry axis at room temperature. We find that the AFM domain with nearest-neighbor magnetic moments oriented away from (towards) each other is produced by annealing in (anti-)parallelEandHfields, corresponding to a positive (negative) axial ME coefficient,α∥, at room temperature. Sinceα⊥at zero kelvin andα∥at room temperature are known to be of opposite sign, our computational and experimental results are consistent.

4.
Phys Rev Lett ; 130(14): 146701, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084421

RESUMEN

We use a combination of density functional theory and Monte Carlo methods to calculate the surface magnetization in magnetoelectric Cr_{2}O_{3} at finite temperatures. Such antiferromagnets, lacking both inversion and time-reversal symmetries, are required by symmetry to possess an uncompensated magnetization density on particular surface terminations. Here, we first show that the uppermost layer of magnetic moments on the ideal (001) surface remains paramagnetic at the bulk Néel temperature, bringing the theoretical estimate of surface magnetization density in line with experiment. We demonstrate that the lower surface ordering temperature compared to bulk is a generic feature of surface magnetization when the termination reduces the effective Heisenberg coupling. We then propose two methods by which the surface magnetization in Cr_{2}O_{3} could be stabilized at higher temperatures. Specifically, we show that the effective coupling of surface magnetic ions can be drastically increased either by a different choice of surface Miller plane, or by Fe doping. Our findings provide an improved understanding of surface magnetization properties in AFMs.

5.
Sci Rep ; 10(1): 12957, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737391

RESUMEN

Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to the transport properties. Here we show that NiTe2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is shared with other TMDs and based on the generic topological character of the Te p-orbital manifold. However, unique to NiTe2, a significant contribution of Ni d orbital states shifts the energy of the Type-II Dirac point close to the Fermi level. In addition, one of the topological surface states intersects the Fermi energy and exhibits a remarkably large spin splitting of 120 meV. Our results establish NiTe2 as an exciting candidate for next-generation spintronics devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...