Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(40): 27425-37, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19651772

RESUMEN

AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain alphaG-helix. Mutation of the corresponding AMPK alpha-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the alphaG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (alpha1(-/-), alpha2(-/-)) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the alphaG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Calpha was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic alphaG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic alphaG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Multimerización de Proteína , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular , Activación Enzimática , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosforilación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Treonina
2.
Biol Cell ; 100(10): 591-601, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18447829

RESUMEN

BACKGROUND INFORMATION: The yeast mitochondrial F(1)F(o)-ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and P(i). For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology. RESULTS AND DISCUSSION: In order to understand the link between ATP synthase oligomerization and mitochondrial morphology, more information is needed on the supramolecular organization of this enzyme within the inner mitochondrial membrane. We have conducted an electron microscopy study on wild-type yeast mitochondria at different levels of organization from spheroplast to isolated ATP synthase complex. Using electron tomography, freeze-fracture, negative staining and image processing, we show that cristae form a network of lamellae, on which ATP synthase dimers assemble in linear and regular arrays of oligomers. CONCLUSIONS: Our results shed new light on the supramolecular organization of the F(1)F(o)-ATP synthase and its potential role in mitochondrial morphology.


Asunto(s)
Mitocondrias/enzimología , Proteínas Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Microscopía por Crioelectrón , Dimerización , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Esferoplastos/enzimología , Esferoplastos/ultraestructura
3.
Biochemistry ; 47(11): 3556-63, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18293929

RESUMEN

The involvement of the b-subunit, subunit 4 in yeast, a component of the peripheral stalk of the ATP synthase, in the dimerization/oligomerization process of this enzyme was investigated. Increasing deletions were introduced by site-directed mutagenesis in the loop located in the mitochondrial intermembrane space and linking the two transmembrane (TM) segments of subunit 4. The resulting strains were still able to grow on nonfermentable media, but defects were observed in ATP synthase dimerization/oligomerization along with concomitant mitochondrial morphology alterations. Surprisingly, such defects, already depicted in the absence of the so-called dimer-specific subunits e and g, were found in a mutant harboring a full amount of subunit g associated to the monomeric form of the ATP synthase. Deletion of the intermembrane space loop of subunit 4 modified the profile of cross-linking products involving cysteine residues belonging to subunits 4, g, 6, and e. This suggests that this loop of subunit 4 participates in the organization of surrounding hydrophobic membranous components (including the two TM domains of subunit 4) and thus is involved in the stability of supramolecular species of yeast ATP synthase in the mitochondrial membrane.


Asunto(s)
Membranas Intracelulares/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Bovinos , Cisteína/genética , Dimerización , Estabilidad de Enzimas/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
4.
Biochemistry ; 45(21): 6715-23, 2006 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-16716082

RESUMEN

It is now clearly established that dimerization of the F(1)F(o) ATP synthase takes place in the mitochondrial inner membrane. Interestingly, oligomerization of this enzyme seems to be involved in cristae morphogenesis. As they were able to form homodimers, subunits 4, e, and g have been proposed as potential ATP synthase dimerization subunits. In this paper, we provide evidence that subunit h, a peripheral stalk component, is located either at or near the ATP synthase dimerization interface. Subunit h homodimers were formed in mitochondria and were found to be associated to ATP synthase dimers. Moreover, homodimerization of subunit h and of subunit i turned out to be independent of subunits e and g, confirming the existence of an ATP synthase dimer in the mitochondrial inner membrane in the absence of subunits e and g. For the first time, this dimer has been observed by BN-PAGE. Finally, from these results we are now able to update our model for the supramolecular organization of the ATP synthase in the membrane and propose a role for subunits e and g, which stabilize the ATP synthase dimers and are involved in the oligomerization of the complex.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/metabolismo , Saccharomyces cerevisiae/enzimología , Dimerización , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , ATPasas de Translocación de Protón Mitocondriales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...