Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Chem Soc Rev ; 53(15): 7828-7874, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38962926

RESUMEN

Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.

2.
J Org Chem ; 89(14): 10047-10053, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38951997

RESUMEN

We have successfully synthesized a series of bidentate ligands by utilizing 2-(trimethylsilyl)phenyl trifluorosulfonate as a precursor for the benzyl group. This method proceeded by inserting a polythiourea into the C═S π-bond, intramolecular ring proton migration, and ring opening. Salient features of this strategy are mild reaction conditions, a novel product structure, excellent stereochemistry, and a good functional group tolerance. Furthermore, a series of density functional theory calculations were performed to gain insights into the transfer mechanism.

3.
Sci Rep ; 14(1): 15246, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956068

RESUMEN

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Asunto(s)
Proteínas 14-3-3 , Ferroptosis , Daño por Reperfusión Miocárdica , PPAR alfa , Animales , Masculino , Ratones , Ratas , Proteínas 14-3-3/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Ferroptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , PPAR alfa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
J Acoust Soc Am ; 156(1): 359-368, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38994905

RESUMEN

A noise attenuation performance test was conducted on earmuffs using a recoilless weapon launch platform in a confined space, along with two acoustic test fixtures (ATFs). The overpressure at the ATF's effective tympanic membrane comprised direct sound at 185 dB sound pressure level (SPL) and reflected sound at 179 dB SPL. Wearing earmuffs reduced these peaks to 162 dB SPL and 169 dB SPL, respectively. The reflected sound from walls was defined as delayed sound. An analytical model for earmuff noise attenuation simulated their effectiveness. The simulation revealed that when the earmuffs attenuated delayed sound, the acoustic impedance of acoustic leakage and the acoustic impedance of the earmuff material decreased by 96% and 50%, respectively. The negative overpressure zone between direct and delayed sound decreased the earmuffs' fit against the ATF. Additionally, the enclosed volume between the earmuff and the ear canal decreased by 12%. After the installation of bandages on the earmuffs, the overpressure peak of delayed sound was reduced by 5 dB. Furthermore, the acoustic impedance of the earmuff's sound leakage path and the acoustic impedance of the earmuff material deformation path increased by 100% and 809%, respectively.


Asunto(s)
Acústica , Dispositivos de Protección de los Oídos , Presión , Humanos , Diseño de Equipo , Ruido , Sonido , Armas de Fuego , Adulto , Masculino , Factores de Tiempo , Modelos Teóricos
5.
Heliyon ; 10(11): e31827, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845915

RESUMEN

Epilepsy is one of the most common brain disorders, and seizures of epilepsy have severe adverse effects on patients. Real-time epilepsy seizure detection using electroencephalography (EEG) signals is an important research area aimed at improving the diagnosis and treatment of epilepsy. This paper proposed a real-time approach based on EEG signal for detecting epilepsy seizures using the STFT and Google-net convolutional neural network (CNN). The CHB-MIT database was used to evaluate the performance, and received the results of 97.74 % in accuracy, 98.90 % in sensitivity, 1.94 % in false positive rate. Additionally, the proposed method was implemented in a real-time manner using the sliding window technique. The processing time of the proposed method just 0.02 s for every 2-s EEG episode and achieved average 9.85- second delay in each seizure onset.

6.
Angew Chem Int Ed Engl ; : e202408611, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924225

RESUMEN

Controlled radical copolymerizations present attractive avenues to obtain polymers with complicated compositions and sequences. In this work, we report the development of a visible-light-driven organocatalyzed controlled copolymerization of fluoroalkenes and acyclic N-vinylamides for the first time. The approach enables the on-demand synthesis of a broad scope of amide-functionalized main-chain fluoropolymers via novel fluorinated thiocarbamates, facilitating regulations over chemical compositions and alternating fractions by rationally selecting comonomer pairs and ratios. This method allows temporally controlled chain-growth by external light, and maintains high chain-end fidelity that promotes facile preparation of block sequences. Notably, the obtained F/N hybrid polymers, upon hydrolysis, afford free amino-substituted fluoropolymers versatile for post modifications toward various functionalities (e.g., amide, sulfonamide, carbamide, thiocarbamide). We further demonstrate the in-situ formation of polymer networks with desirable properties as protective layers on lithium metal anodes, presenting a promising avenue for advancing lithium metal batteries.

7.
Int J Biol Macromol ; 273(Pt 1): 132875, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852718

RESUMEN

To achieve the objective of "waste control by waste", in this study, a green aerogel adsorbent comprised of pomelo-peel cellulose and sodium alginate (PCC/SA) was prepared through dual-network crosslinking. The resulting 3D hierarchical porous structured PCC/SA aerogel exhibited good structural stability, and kept the morphological integrity during 10 days in a wide pH range (2-10), suggesting its potential for recycling in diverse complex environments. Besides, the superior adsorption capacities for methylene blue (MB) and Cu(II) were observed, with the qm values and adsorption equilibrium times were recorded to be 1299.59 mg/g (300 min) and 287.55 mg/g (120 min), correspondingly. Furthermore, the favorable reusability of the PCC/SA aerogel was also demonstrated, with the removal efficiency for MB remaining almost unchanged (about 94 %) after 10 adsorption-desorption cycles, while there was a slight reduction for Cu(II) from 85.28 % to 72.47 %. XPS and FTIR analysis revealed that electrostatic attraction, hydrogen bonding, cation exchange and coordination were the major adsorption mechanisms. Importantly, the PCC/SA aerogel can be naturally degraded in soil within 10 weeks. Therefore, the as-prepared aerogel bead derived from pomelo peel shows great promise as an adsorbent for wastewater treatment containing dye and heavy metal ions.


Asunto(s)
Celulosa , Colorantes , Geles , Metales Pesados , Celulosa/química , Adsorción , Colorantes/química , Geles/química , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Alginatos/química , Concentración de Iones de Hidrógeno , Azul de Metileno/química , Citrus/química , Porosidad , Purificación del Agua/métodos , Cobre/química , Cinética
8.
Angew Chem Int Ed Engl ; : e202407304, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898368

RESUMEN

Controlling the structure and chemistry of solid electrolyte interphase (SEI) underpins the stability of electrolyte-electrode interface, and is crucial for advancing rechargeable lithium metal batteries (LMBs). Here, we utilized photo-controlled copolymerization to achieve the on-demand synthesis of fluorosulfonyl fluoropolymers as unprecedented artificial SEI layers on Li metal anodes. This work not only enables instant formation of a hybrid polymer-inorganic interphase that consists of a polymer-enriched top layer and a LiF-fortified bottom layer, originating from a single polymeric component, but also imparts various desirable physical properties (e.g., good mechanical strength and flexibility, high ion conductivity, low overpotential) to SEI via a single-to-divergent strategy. Model reactions and structural characterizations supported the formation of a divergent fluorinated interphase, which furnished prolonged stabilization of Li deposition, high coulombic efficiency and improved cycling behavior in electrochemical experiments. This work highlights the great potential of exploring reactive polymers as versatile coatings to stabilize Li metal anodes, providing a promising avenue to solve electrode-electrolyte interfacial problems for LMBs.

9.
World J Psychiatry ; 14(5): 695-703, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38808087

RESUMEN

BACKGROUND: Cognitive reserve (CR) and the catechol-O-methyltransferase (COMT) Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia. However, the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined. AIM: To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism. METHODS: In a cross-sectional study, 54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype, CR, and negative symptoms. CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS: COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes. In the total sample, significant negative correlations were found between negative symptoms and information, similarities. Associations between information, similarities and negative symptoms were observed in Val homozygotes only, with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms (information, ß = -0.282, 95%CI: -0.552 to -0.011, P = 0.042; similarities, ß = -0.250, 95%CI: -0.495 to -0.004, P = 0.046). CONCLUSION: This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.

10.
Bioact Mater ; 38: 207-224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38756201

RESUMEN

Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38758994

RESUMEN

OBJECTIVE: The primary aim of this study is to assess the diagnostic efficacy of elastography and contrast-enhanced ultrasound (CEUS) in the identification of breast lesions subsequent to the optimization and correction of the BI-RADS category 4 classification obtained through conventional ultrasound. The objective is to augment both the specificity and accuracy of breast lesion diagnosis, thereby establishing a reliable framework for reducing unnecessary biopsies in clinical settings. METHODS: A cohort comprising 50 cases of breast lesions classified under BI-RADS category 4 was collected during the period from November 2022 and November 2023. These cases were examined utilizing strain elastography (SE), shear wave elastography (SWE), and CEUS. Novel scoring methodologies for ultrasonic elastography (UE) and CEUS were formulated for this investigation. Subsequently, the developed UE and CEUS scoring systems were used to refine and optimize the conventional BI-RADS classification, either in isolation or in conjunction. Based on the revised classification, the benign group was classified as category 3 and the suspected malignant group was classified as category 4a and above, with pathological results serving as the definitive reference standard. The diagnostic efficacy of the optimized UE and CEUS, both independently and in combination, was meticulously scrutinized and compared using receiver operating characteristic (ROC) curve analysis, with pathological findings as the reference standard. RESULTS: Within the study group, malignancy manifested in 11 cases. Prior to the implementation of the optimization criteria, 78% (39 out of 50) of patients underwent biopsies deemed unnecessary. Following the application of optimization criteria, specifically a threshold of≥8.5 points for the UE scoring method and≥6.5 points for the CEUS scoring method, the incidence of unnecessary biopsies diminished significantly. Reduction rates were observed at 53.8% (21 out of 39) with the UE protocol, 56.4% (22 out of 39) with the CEUS protocol, and 89.7% (35 out of 39) with the combined UE and CEUS optimization protocols. CONCLUSION: The diagnostic efficacy of conventional ultrasound BI-RADS category 4 classification for breast lesions is enhanced following optimized correction using UE and CEUS, either independently or in conjunction. The application of the combined protocol demonstrates a notable reduction in the incidence of unnecessary biopsies.

12.
Schizophrenia (Heidelb) ; 10(1): 41, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580688

RESUMEN

The aim of this study is to compare ecologically-valid measure (the Cambridge Prospective Memory Test, CAMPROMPT) and laboratory measure (eye-tracking paradigm) in assessing prospective memory (PM) in individuals with schizophrenia spectrum disorders (SSDs). In addition, eye-tracking indices are used to examine the relationship between PM and other cognitive domains in SSDs patients. Initially, the study sample was formed by 32 SSDs patients and 32 healthy control subjects (HCs) who were matched in sociodemographic profile and the performance on CAMPROMPT. An eye-tracking paradigm was employed to examine the differences in PM accuracy and key cognitive processes (e.g., cue monitoring) between the two groups. Additional 31 patients were then recruited to investigate the relationship between PM cue monitoring, other cognitive functions, and the severity of clinical symptoms within the SSDs group. The monitoring of PM cue was reflected in total fixation time and total fixation counts for distractor words. Cognitive functions were assessed using the Chinese version of the MATRICS Consensus Cognitive Battery (MCCB). The Positive and Negative Syndrome Scale (PANSS) was applied to assess psychopathology. SSDs patients exhibited fewer total fixation counts for distractor words and lower PM accuracy compared to HCs, even though they were priori matched on CAMPROMPT. Correlation analysis within the SSDs group (63 cases) indicated a negative correlation between PM accuracy and PANSS total score, and a positive correlation with working memory and attention/vigilance. Regression analysis within the SSDs group revealed that higher visual learning and lower PANSS total scores independently predicted more total fixation counts on distractor words. Impairment in cue monitoring is a critical factor in the PM deficits in SSDs. The eye-tracking laboratory paradigm has advantages over the ecologically-valid measurement in identifying the failure of cue detection, making it a more sensitive tool for PM deficits in patients with SSDs.

13.
Org Lett ; 26(17): 3575-3580, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38636450

RESUMEN

We introduce switchable chemoselectivity strategies based on the hydrazone phosphaketene intermediate to synthesize three classes of 1,2,4-diazaphosphol derivatives. First, the five-membered heterocyclic P and O anion intermediates acted as nucleophilic agents in the selective construction of C-P and C-O bonds. Second, the phosphinidene served as a phosphorus synthon, allowing for the formation of C-P and C-N bonds. Finally, a stepwise mechanism, supported by DFT calculations, was invoked to explain the reaction selectivity.

14.
BMC Cardiovasc Disord ; 24(1): 233, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689231

RESUMEN

OBJECTIVE: This study aimed to examine the changes in absolute value and decline rate of early serum cardiac troponin T (cTnT) and N-terminal pro b-type natriuretic peptide (NT-proBNP) in neonates who received veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) support therapy within the first week of life. METHODS: We retrospectively collected clinical data and laboratory test results of 18 neonates who underwent V-A ECMO support within one week of birth, from July 2021 to June 2023, using the electronic medical record system. These patients were categorized into survival and death groups. Comparative analyses of the absolute values and decline rates of cTnT and NT-proBNP were made between the groups at baseline, and at 24, 48, and 72 h post-ECMO initiation. RESULTS: Out of the 18 neonates, 12 survived (survival rate: 66.7%), while 6 succumbed. The survival group exhibited significantly lower absolute values of cTnT and NT-proBNP than the death group, and their decline rates were significantly higher. Notably, all neonates without an early decline in cTnT and NT-proBNP levels were in the death group. CONCLUSION: The early changes in the absolute value and decline rate of serum cTnT and NT-proBNP in neonates undergoing V-A ECMO may serve as predictors of their prognosis.


Asunto(s)
Biomarcadores , Oxigenación por Membrana Extracorpórea , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Troponina T , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/mortalidad , Péptido Natriurético Encefálico/sangre , Troponina T/sangre , Recién Nacido , Fragmentos de Péptidos/sangre , Estudios Retrospectivos , Masculino , Femenino , Biomarcadores/sangre , Factores de Tiempo , Resultado del Tratamiento , Valor Predictivo de las Pruebas , Factores de Riesgo
15.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605012

RESUMEN

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Asunto(s)
Osteogénesis , Andamios del Tejido , Osteogénesis/fisiología , Andamios del Tejido/química , Porosidad , Impresión Tridimensional , Zinc/farmacología
16.
Heliyon ; 10(7): e28325, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571655

RESUMEN

Background: Periodontal disease and coronary heart disease are both prevalent diseases worldwide and cause patients physical and mental suffering and a global burden. Recent studies have suggested a link between periodontal disease and coronary heart disease, but there is less research in this field from the perspective of bibliometrics. Objective: This study aimed to quantitatively analyze the literature on periodontal disease and coronary heart disease to summarize intellectual bases, research hotspots, and emerging trends and pave the way for future research. Methods: The Science Citation Index Expanded database was used to retrieve study records on periodontal disease and coronary heart disease from 1993 to 2022. After manual screening, the data were used for cooperative network analysis (including countries/regions, institutions and authors), keyword analysis, and reference co-citation analysis by CiteSpace software. Microsoft Excel 2019 was applied for curve fitting of annual trend in publications and citations. Results: A total of 580 studies were included in the analysis. The number of publications and citations in this field has shown an upward trend over the past 30 years. There was less direct collaboration among authors and institutions in this field but closer collaboration between countries. The United States was the country with the most published articles in this field (169/580, 29.14%). Based on the results of keyword analysis and literature co-citation analysis, C-reactive protein, oral flora, atherosclerosis, infection, and inflammation were previous research hotspots, while global burden and cardiovascular outcomes were considered emerging trends in this field. Conclusion: Studies on periodontal disease and coronary heart disease, which have attracted the attention of an increasing number of researchers, have been successfully analyzed using bibliometrics and visualization techniques. This paper will help scholars better understand the dynamic evolution of periodontal disease and coronary heart disease and point out the direction for future research. Clinical significance: This paper presents an overview between periodontal disease and coronary heart disease. Further exploration of the two diseases themselves and the potential causal relationship between the two is necessary and relevant, which may impact basic research, diagnosis, and treatment related to both diseases. This will aid the work of researchers and specialist doctors, and ultimately benefit patients with both diseases.

18.
J Int Med Res ; 52(3): 3000605241234006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443785

RESUMEN

OBJECTIVE: This study explored the potential molecular mechanisms of ursolic acid (UA) in bladder cancer treatment using network pharmacology and molecular docking. METHODS: The Traditional Chinese Medicine Systems Pharmacology and UniProt databases were used to screen potential targets of UA. Relevant bladder cancer target genes were extracted using the GeneCards database. All data were pooled and intercrossed to obtain common target genes of UA and bladder cancer. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Molecular docking was conducted to verify the possible binding conformation between UA and bladder cancer cells. Then, in vitro experiments were performed to further validate the predicted results. RESULTS: UA exerts anti-tumor effects on bladder cancer through multiple targets and pathways. Molecular docking indicated that UA undergoes stable binding with the proteins encoded by the top six core genes (STAT3, VEGFA, CASP3, TP53, IL1B, and CCND1). The in vitro experiments verified that UA can induce bladder cancer cell apoptosis by regulating the PI3K/Akt signaling pathway. CONCLUSIONS: Our study illustrated the potential mechanism of UA in bladder cancer based on network pharmacology and molecular docking. The results will provide scientific references for follow-up studies and clinical treatment.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Ácido Ursólico , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
19.
Int J Biol Macromol ; 265(Pt 1): 130813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479667

RESUMEN

In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.


Asunto(s)
Celulosa/análogos & derivados , Carne de Cerdo , Carne Roja , Porcinos , Animales , Gelatina , Alimentación Animal , Antocianinas , Embalaje de Alimentos , Concentración de Iones de Hidrógeno
20.
Foods ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38472830

RESUMEN

In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...