Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Adv Sci (Weinh) ; : e2403389, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264289

RESUMEN

Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.

2.
Front Immunol ; 15: 1404640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007128

RESUMEN

Introduction: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied. Methodology: In this study, we assess the impact of cell label derivation on H&E model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model). Results: We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility. Discussion: Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.


Asunto(s)
Aprendizaje Profundo , Inmunofenotipificación , Neoplasias Pulmonares , Coloración y Etiquetado , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Coloración y Etiquetado/métodos , Biomarcadores de Tumor/metabolismo , Masculino , Linfocitos T/inmunología , Femenino
3.
World J Clin Cases ; 12(21): 4527-4535, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070839

RESUMEN

BACKGROUND: Psychological intervention nursing (PIN) has been considered to have a curative effect on cesarean section (CS) postoperative recovery. However, the therapeutic mechanisms remain obscure. AIM: To explore the effects of PIN combined with acupressure massage on CS postoperative recovery. METHODS: A retrospective study was conducted on 150 pregnant women admitted to an obstetrics department between January 2020 and January 2023. The control group (CG) received acupressure therapy (n = 73), and the intervention group (IG) received acupressure therapy and PIN therapy (n = 77). Postoperative recovery time was assessed by anal-exhausting, defecation, bed activity, breastfeeding, and hospital stay times. Adverse effects, including infection, bleeding, limb numbness, intrauterine hematoma, urinary retention, and venous thromboembolism, were recorded. the pain visual analogue scale (VAS) was used to evaluate the degree of pain. Anxiety and depression status were qualitatively assessed using the self-rating anxiety scale (SAS), self-rating depression scale (SDS), and Edinburgh postpartum depression scale (EPDS). The Pittsburgh sleep quality index (PSQI) was used to compare sleep quality between the groups. RESULTS: The baseline data and SAS, SDS, EPDS, and PSQI scores did not significantly differ before CS (P > 0.05) and neither did complication rates between the two groups after CS (P > 0.05). However, anal-exhausting, defecation, waking up, breastfeeding, and hospitalization times were significantly shorter for participants in the IG than those for participants in the CG (P < 0.05). The VAS, SAS, SDS, EPDS, and PSQI scores of the IG were significantly lower than those of the CG (P < 0.05). CONCLUSION: PIN, combined with acupressure massage, effectively promotes maternal recovery, reduces post-CS pain, and improves postoperative negative emotions and sleeping quality.

4.
ACS Appl Mater Interfaces ; 16(32): 41788-41799, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39079025

RESUMEN

Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy. The double-template MIP was prepared by imprinting the exposed peptide segment of the extracellular domain of CD47 and the active center of GARFT. Owing to the imprinted cavities on the surface of MIP, it can actively target cancer cells and mask the "do not eat me" signal upon binding to CD47 thereby blocking the CD47-SIRPα pathway and ultimately enhancing phagocytosis by macrophages. In addition, MIP can specifically bind to the active center of GARFT upon entry into the cells, thereby inhibiting its catalytic activity and ultimately interfering with the normal expression of DNA. A series of cell experiments demonstrated that MIP can effectively target CD47 overexpressed 4T1 cancer cells and inhibit the growth of 4T1 cells. The enhanced phagocytosis ability of macrophages-RAW264.7 cells was also clearly observed by confocal imaging experiments. In vivo experiments also showed that the MIP exhibited a satisfactory tumor inhibition effect. Therefore, this study provides a new idea for the application of molecular imprinting technology to antimetabolic therapy in conjunction with macrophage-mediated immunotherapy.


Asunto(s)
Antígeno CD47 , Macrófagos , Polímeros Impresos Molecularmente , Fagocitosis , Antígeno CD47/metabolismo , Antígeno CD47/química , Fagocitosis/efectos de los fármacos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Polímeros Impresos Molecularmente/química , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología
5.
Front Aging Neurosci ; 16: 1418455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021706

RESUMEN

Background: Cognitive function (CF) deterioration is a pressing concern in geriatric research. This study aimed to explore the relationship between physical activity (PA) and CF in older adults. Methods: This study adopted a dual approach, employing both observational and genetic approaches through data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and Mendelian Randomization (MR) analysis. For the NHANES component, PA levels were evaluated using the Global Physical Activity Questionnaire, and CF was assessed via standardized tests. Multivariate regression, threshold effect analysis, smoothing curve fitting, and subgroup analyses were conducted to examine the association between PA and CF. In parallel, MR methods, using genetic variants as instrumental variables, assessed the causal impact of PA on CF and related conditions such as Alzheimer's disease and dementia. Results: Observational findings from NHANES demonstrated a positive correlation between PA and CF, notably among female participants. The detailed analysis identified specific thresholds of PA that correlate with cognitive enhancements. However, MR results did not support a significant causal relationship between PA and CF or dementia-related outcomes, indicating an absence of a direct genetic basis for the observational associations. Conclusion: Although observational data from NHANES suggest that PA is positively associated with CF in older adults, particularly among women, MR analysis did not confirm these findings as causally related. The discrepancy highlights the complexity of the PA-CF relationship and underscores the need for further research. These results emphasize the potential of PA as a modifiable risk factor for CF, though causal effects remain to be definitively established.

6.
IEEE Trans Image Process ; 33: 4016-4028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900621

RESUMEN

In this paper, we consider decomposing an image into its cartoon and texture components. Traditional methods, which mainly rely on the gradient amplitude of images to distinguish between these components, often show limitations in decomposing small-scale, high-contrast texture patterns and large-scale, low-contrast structural components. Specifically, these methods tend to decompose the former to the cartoon image and the latter to the texture image, neglecting the scale features inherent in both components. To overcome these challenges, we introduce a new variational model which incorporates an L0 -based total variation norm for the cartoon component and an L2 norm for the scale space representation of the texture component. We show that the texture component has a small L2 norm in the scale space representation. We apply a quadratic penalty function to handle the non-separable L0 norm minimization problem. Numerical experiments are given to illustrate the efficiency and effectiveness of our approach.

7.
Talanta ; 278: 126432, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917547

RESUMEN

Given the threat to human health posed by the abuse of tetracycline (TC), the development of a portable, on-site methods for highly sensitive and rapid TC detection is crucial. In this work, we initially synthesized europium-doped silicon nanoparticles (SiEuNPs) through a facile one-pot microwave-assisted method. Due to its blue-red dual fluorescence emission (465 nm/621 nm), which was respectively attributed to the silicon nanoparticles and Eu3+, SiEuNPs were designed as a ratiometric fluorescent sensor for TC detection. For the dual-signal reverse response mechanism: TC quenched the blue emission from silicon nanoparticles through inner filter effect (IFE), and enhanced the red emission through "antenna effect" (AE) between TC and Eu3+, the nanoprobe was able to detect TC within a range of 0.2-10 µM with a limit of detection (LOD) of 10.7 nM. Notably, the equilibrium detection time was only 1 min, achieving rapid TC detection. Furthermore, TC was also measured in real samples (tap water, milk and honey) with recoveries ranging from 95.7 % to 117.0 %. More importantly, a portable smartphone-assisted on-site detection platform was developed, enabling real-time qualitative identification and semi-quantitative analysis of TC based on fluorescence color changes. This work not only provided a novel doped silicon nanoparticles strategy, but also constructed a ratiometric sensing platform with dual-signal reverse response for intuitive and real-time TC detection.


Asunto(s)
Europio , Colorantes Fluorescentes , Nanopartículas , Silicio , Teléfono Inteligente , Tetraciclina , Europio/química , Silicio/química , Nanopartículas/química , Tetraciclina/análisis , Colorantes Fluorescentes/química , Leche/química , Animales , Espectrometría de Fluorescencia/métodos , Miel/análisis , Límite de Detección , Imagen Óptica , Contaminantes Químicos del Agua/análisis
8.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773146

RESUMEN

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Astrocitos , Trastorno Depresivo Mayor , Ratones Noqueados , Animales , Astrocitos/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ratones , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estrés Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Conducta Animal , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Depresión/metabolismo , Depresión/genética , Adulto , Transmisión Sináptica , Persona de Mediana Edad
9.
Materials (Basel) ; 16(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38068235

RESUMEN

Laminate substrates in advanced IC packages serve as not only the principal heat dissipation pathway but also the critical component governing the thermomechanical performance of advanced packaging technologies. A solid and profound grasp of their thermomechanical properties is of crucial importance to better understand IC packages' thermomechanical behavior. This study attempts to introduce a subregion homogenization modeling framework for effectively and efficiently modeling and characterizing the equivalent thermomechanical behavior of large-scale and high-density laminate substrates comprising the non-uniform distribution and non-unidirectional orientation of tiny metal traces. This framework incorporates subregion modeling, trace mapping and modeling, and finite element analysis (FEA)-based effective modeling. In addition, the laminates are macroscopically described as elastic orthotropic or elastic anisotropic material. This framework is first validated with simple uniaxial tensile and thermomechanical test simulations, and the calculation results associated with these two effective material models are compared with each other, as well as with those of two existing mixture models, and direct the detailed FEA. This framework is further tested on the prediction of the process-induced warpage of a flip chip chip-scale package, and the results are compared against the measurement data and the results of the whole-domain modeling-based effective approach and two existing mixture models.

10.
Cell Discov ; 9(1): 74, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37460462

RESUMEN

Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA