Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 1): 051607, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20866239

RESUMEN

We report here a unique in-plane self-templating electrochemical growth of arrays of copper nanopearl chains from an ultrathin layer of CuSO4 electrolyte. Scanning electron microscopy indicates that the electrodeposit filaments form equally spaced bundles, which consist of long, straight, pearl-chain-like copper filaments with corrugated periodic structure. The bundle separation can be tuned by changing the applied electric current in electrodeposition. Experiments show that the periodic morphology on the nanopearl chain corresponds to the periodic distribution of copper and cuprous oxide. The mechanism for the bundle formation is discussed.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 1): 051601, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16802940

RESUMEN

We report here a self-organized electroless deposition of copper in an ultrathin layer CuSO4 of electrolyte. Microscopically the branching rate of the copper deposits is significantly decreased, forming an array of smooth polycrystalline filaments. Compared with a conventional electrodeposition system, no macroscopic electric field is involved and the thickness of the electrolyte layer is greatly decreased. Therefore the electroless deposition takes place in a nearly ideal, two-dimensional diffusion-limited environment. We suggest that restriction of the thickness of the electrolyte film is responsible for the generation of smoother branches of the electrodeposits. Our data also show that even in a diffusion-limited scenario the aggregate morphology is not necessarily very ramified and fractal-like.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA