Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 594(7861): 111-116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012115

RESUMEN

Ubiquitylation is a widespread post-translational protein modification in eukaryotes and marks bacteria that invade the cytosol as cargo for antibacterial autophagy1-3. The identity of the ubiquitylated substrate on bacteria is unknown. Here we show that the ubiquitin coat on Salmonella that invade the cytosol is formed through the ubiquitylation of a non-proteinaceous substrate, the lipid A moiety of bacterial lipopolysaccharide (LPS), by the E3 ubiquitin ligase ring finger protein 213 (RNF213). RNF213 is a risk factor for moyamoya disease4,5, which is a progressive stenosis of the supraclinoid internal carotid artery that causes stroke (especially in children)6,7. RNF213 restricts the proliferation of cytosolic Salmonella and is essential for the generation of the bacterial ubiquitin coat, both directly (through the ubiquitylation of LPS) and indirectly (through the recruitment of LUBAC, which is a downstream E3 ligase that adds M1-linked ubiquitin chains onto pre-existing ubiquitin coats8). In cells that lack RNF213, bacteria do not attract ubiquitin-dependent autophagy receptors or induce antibacterial autophagy. The ubiquitylation of LPS on Salmonella that invade the cytosol requires the dynein-like core of RNF213, but not its RING domain. Instead, ubiquitylation of LPS relies on an RZ finger in the E3 shell. We conclude that ubiquitylation extends beyond protein substrates and that ubiquitylation of LPS triggers cell-autonomous immunity, and we postulate that non-proteinaceous substances other than LPS may also become ubiquitylated.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Autofagia , Línea Celular , Células HeLa , Humanos , Ratones , Dominios RING Finger , Infecciones por Salmonella/microbiología , Ubiquitina/metabolismo
2.
Genome Med ; 13(1): 8, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451348

RESUMEN

BACKGROUND: Shigella is a major diarrheal pathogen for which there is presently no vaccine. Whole genome sequencing provides the ability to predict and derive novel antigens for use as vaccines. Here, we aimed to identify novel immunogenic Shigella antigens that could serve as Shigella vaccine candidates, either alone, or when conjugated to Shigella O-antigen. METHODS: Using a reverse vaccinology approach, where genomic analysis informed the Shigella immunome via an antigen microarray, we aimed to identify novel immunogenic Shigella antigens. A core genome analysis of Shigella species, pathogenic and non-pathogenic Escherichia coli, led to the selection of 234 predicted immunogenic Shigella antigens. These antigens were expressed and probed with acute and convalescent serum from microbiologically confirmed Shigella infections. RESULTS: Several Shigella antigens displayed IgG and IgA seroconversion, with no difference in sero-reactivity across by sex or age. IgG sero-reactivity to key Shigella antigens was observed at birth, indicating transplacental antibody transfer. Six antigens (FepA, EmrK, FhuA, MdtA, NlpB, and CjrA) were identified in in vivo testing as capable of producing binding IgG and complement-mediated bactericidal antibody. CONCLUSIONS: These findings provide six novel immunogenic Shigella proteins that could serve as candidate vaccine antigens, species-specific carrier proteins, or targeted adjuvants.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas contra la Shigella/inmunología , Formación de Anticuerpos/inmunología , Proteínas Bacterianas/inmunología , Biología Computacional , Disentería Bacilar/sangre , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Sangre Fetal/inmunología , Genoma Humano , Humanos , Inmunización , Inmunoglobulina G/sangre , Seroconversión
3.
Cell Host Microbe ; 22(4): 507-518.e5, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024643

RESUMEN

Interferon exposure boosts cell-autonomous immunity for more efficient pathogen control. But how interferon-enhanced immunity protects the cytosol against bacteria and how professionally cytosol-dwelling bacteria avoid clearance are insufficiently understood. Here we demonstrate that the interferon-induced GTPase family of guanylate-binding proteins (GBPs) coats Shigella flexneri in a hierarchical manner reliant on GBP1. GBPs inhibit actin-dependent motility and cell-to-cell spread of bacteria but are antagonized by IpaH9.8, a bacterial ubiquitin ligase secreted into the host cytosol. IpaH9.8 ubiquitylates GBP1, GBP2, and GBP4 to cause the proteasome-dependent destruction of existing GBP coats. This ubiquitin coating of Shigella favors the pathogen as it liberates bacteria from GBP encapsulation to resume actin-mediated motility and cell-to-cell spread. We conclude that an important function of GBP recruitment to S. flexneri is to prevent the spread of infection to neighboring cells while IpaH9.8 helps bacterial propagation by counteracting GBP-dependent cell-autonomous immunity.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Citosol/inmunología , Proteínas de Unión al GTP/metabolismo , Shigella flexneri/patogenicidad , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Citosol/microbiología , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/inmunología , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Celular , Inmunidad Innata , Interferones/inmunología , Interferones/metabolismo , Proteolisis , Shigella flexneri/genética , Shigella flexneri/inmunología , Células THP-1 , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
4.
Science ; 343(6169): 437-440, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24458646

RESUMEN

Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden.


Asunto(s)
Linaje de la Célula/genética , Enfermedades de los Perros/genética , Perros/genética , Tumores Venéreos Veterinarios/epidemiología , Tumores Venéreos Veterinarios/genética , Animales , Efecto Fundador , Dosificación de Gen , Genoma , Cariotipo , Mutación , Retroelementos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...