Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754150

RESUMEN

The ability to navigate effectively in a rich and complex world is crucial for the survival of all animals. Specialist neural structures have evolved that are implicated in facilitating this ability, one such structure being the ring attractor network. In this study, we model a trio of Spiking Neural Network (SNN) ring attractors as part of a bio-inspired navigation system to maintain an internal estimate of planar translation of an artificial agent. This estimate is dynamically calibrated using a memory recall system of landmark-free allotheic multisensory experiences. We demonstrate that the SNN-based ring attractor system can accurately model motion through 2D space by integrating ideothetic velocity information and use recalled allothetic experiences as a positive corrective mechanism. This SNN based navigation system has potential for use in mobile robotics applications where power supply is limited and external sensory information is intermittent or unreliable.

2.
Langmuir ; 35(40): 13182-13188, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525934

RESUMEN

Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses toward implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances in the utilization of liquid marbles (LMs, microliter quantities of fluid coated in hydrophobic powder) for the creation of unconventional computing devices, we describe the development of LMs with neuromorphic properties through the use of copper coatings and 1.0 mg mL-1 carbon nanotube (CNT)-containing fluid cores. Experimentation was performed through sandwiching the LMs between two cup-style electrodes and stimulating them with repeated dc pulses at 3.0 V. Our results demonstrate that "entrainment" of CNT-filled copper LMs via periodic pulses can cause their electrical resistance to rapidly switch between high to low resistance profiles upon inverting the polarity of stimulation: the reduction in resistance between high and low profiles was approximately 88% after two rounds of entrainment. This effect was found to be reversible through reversion to the original stimulus polarity and was strengthened by repeated experimentation, as evidenced by a mean reduction in time to switching onset of 43%. These effects were not replicated in nanotube solutions not bound inside LMs. Our electrical characterization also reveals that nanotube-filled LMs exhibit pinched loop hysteresis IV profiles consistent with the description of memristors. We conclude by discussing the applications of this technology to the development of unconventional computing devices and the study of emergent characteristics in biological neural tissue.

3.
Sci Rep ; 9(1): 8957, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222047

RESUMEN

As the extent to which aquatic environments are polluted with nano-scale objects is becoming known, we are presented with an urgent need to study their effects on various forms of life and to clear and/or detoxify them. A range of methods exist to these ends, but a lack of inter-study comparability arising from an absence of experimental standardisation impedes progress. Here we present experiments that demonstrate measurement of orchestrated uptake and clearance of two environmentally-relevant nano- and micromaterials by a model aquatic microoraganism, Paramecium caudatum. Experiments were based on a simple, modular, multi-chamber platform that permits standardised control of organism behaviour and measurement of variables relevant to the study of nanotoxicology, including nanomaterial chemotaxis assays, bioaccumulation and deleterious effects on cell motility systems. Uptake of internalised materials may be estimated through the addition of a low-cost fluorescence spectrometer. P. caudatum cells can clear an estimated 0.7 fg of contaminant materials (or 161 of the particles used) per cell over a 5 mm distance per 6 hour experiment, whilst suffering few short-term adverse effects, suggesting that the organism and the platform used to investigate their properties are well-suited to a range of laboratory and field-based nanotoxicological studies.


Asunto(s)
Nanopartículas/toxicidad , Paramecium caudatum/metabolismo , Espectrometría de Fluorescencia
4.
Biomimetics (Basel) ; 3(2)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31105227

RESUMEN

The aquatic unicellular organism Paramecium caudatum uses cilia to swim around its environment and to graze on food particles and bacteria. Paramecia use waves of ciliary beating for locomotion, intake of food particles and sensing. There is some evidence that Paramecia pre-sort food particles by discarding larger particles, but intake the particles matching their mouth cavity. Most prior attempts to mimic cilia-based manipulation merely mimicked the overall action rather than the beating of cilia. The majority of massive-parallel actuators are controlled by a central computer; however, a distributed control would be far more true-to-life. We propose and test a distributed parallel cilia platform where each actuating unit is autonomous, yet exchanging information with its closest neighboring units. The units are arranged in a hexagonal array. Each unit is a tileable circuit board, with a microprocessor, color-based object sensor and servo-actuated biomimetic cilia actuator. Localized synchronous communication between cilia allowed for the emergence of coordinated action, moving different colored objects together. The coordinated beating action was capable of moving objects up to 4 cm/s at its highest beating frequency; however, objects were moved at a speed proportional to the beat frequency. Using the local communication, we were able to detect the shape of objects and rotating an object using edge detection was performed; however, lateral manipulation using shape information was unsuccessful.

5.
Biosystems ; 156-157: 46-52, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28410875

RESUMEN

Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies.


Asunto(s)
Movimiento Celular , Cilios , Paramecium , Membrana Celular , Transporte de Proteínas
6.
Sci Rep ; 6: 19948, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26837470

RESUMEN

Networks of protoplasmic tubes of organism Physarum polycehpalum are macro-scale structures which optimally span multiple food sources to avoid repellents yet maximize coverage of attractants. When data are presented by configurations of attractants and behaviour of the slime mould is tuned by a range of repellents, the organism preforms computation. It maps given data configuration into a protoplasmic network. To discover physical means of programming the slime mould computers we explore conductivity of the protoplasmic tubes; proposing that the network connectivity of protoplasmic tubes shows pathway-dependent plasticity. To demonstrate this we encourage the slime mould to span a grid of electrodes and apply AC stimuli to the network. Learning and weighted connections within a grid of electrodes is produced using negative and positive voltage stimulation of the network at desired nodes; low frequency (10 Hz) sinusoidal (0.5 V peak-to-peak) voltage increases connectivity between stimulated electrodes while decreasing connectivity elsewhere, high frequency (1000 Hz) sinusoidal (2.5 V peak-to-peak) voltage stimulation decreases network connectivity between stimulated electrodes. We corroborate in a particle model. This phenomenon may be used for computation in the same way that neural networks process information and has the potential to shed light on the dynamics of learning and information processing in non-neural metazoan somatic cell networks.


Asunto(s)
Citoplasma/metabolismo , Conductividad Eléctrica , Physarum polycephalum/metabolismo , Modelos Biológicos , Redes Neurales de la Computación , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Biosystems ; 134: 16-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26007225

RESUMEN

Computing devices are composed of spatial arrangements of simple fundamental logic gates. These gates may be combined to form more complex adding circuits and, ultimately, complete computer systems. Implementing classical adding circuits using unconventional, or even living substrates such as slime mould Physarum polycephalum, is made difficult and often impractical by the challenges of branching fan-out of inputs and regions where circuit lines must cross without interference. In this report we explore whether it is possible to avoid spatial propagation, branching and crossing completely in the design of adding circuits. We analyse the input and output patterns of a single-bit full adder circuit. A simple quantitative transformation of the input patterns which considers the total number of bits in the input string allows us to map the respective input combinations to the correct outputs patterns of the full adder circuit, reducing the circuit combinations from a 2:1 mapping to a 1:1 mapping. The mapping of inputs to outputs also shows an incremental linear progression, suggesting its implementation in a range of physical systems. We demonstrate an example implementation, first in simulation, inspired by self-oscillatory dynamics of the acellular slime mould P. polycephalum. We then assess the potential implementation using plasmodium of slime mould itself. This simple transformation may enrich the potential for using unconventional computing substrates to implement digital circuits.


Asunto(s)
Physarum polycephalum/fisiología , Biología Computacional
8.
Biosystems ; 128: 48-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25636247

RESUMEN

The slime mould Physarum polycephalum is a large single celled myxomycete; its plasmodium consists of tubes which extend to find sources of food. It has been previously shown that the tubes are conductive with a resistance of approximately 3 MΩ, and have been used in basic DC circuits. Hybrid slime mould-electronic circuits have been proposed, using the protoplasmic tubes, grown between agar, as Physarum wires. This paper aims to evaluate the electrical properties of the protoplasmic tubes with respect to analogue and digital waveforms. The Physarum wires act as low pass filters with a mean cut off frequency of 19kHz (SD 9 KHz); they have a 12.1 dB/decade roll-off (SD 1.9 dB/decade). Mean attenuation across the band-pass range is -6 dB (S.D. 4.5 dB). The mechanism for the frequency dependant attenuation is unknown however a combination of protoplasmic electrolyte and the cytoskeletal structure is the most likely cause. The tubes last approximately 2 weeks before forming a dry sclerotia, when they cease being conductive and is the prevalent limiting factor of their practical use; this is caused by dehydration and lack of nutrition, a limitation which may be overcome. The potential for Physarum wires in hybrid circuits is strengthened; while previous circuits were simple DC circuits, this work demonstrates that they may be used as electronic components or wires in both digital and analogue circuits or even as a computing component in analogue computers.


Asunto(s)
Citoplasma/metabolismo , Conductividad Eléctrica , Physarum polycephalum/metabolismo , Agar
9.
Biosystems ; 124: 21-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25102081

RESUMEN

Physarum polycephalum is a large single amoeba cell, which in its plasmodial phase, forages and connects nearby food sources with protoplasmic tubes. The organism forages for food by growing these tubes towards detected foodstuff, this foraging behaviour is governed by simple rules of photoavoidance and chemotaxis. The electrical activity of the tubes oscillates, creating a peristaltic like action within the tubes, forcing cytoplasm along the lumen; the frequency of this oscillation controls the speed and direction of growth. External stimuli such as light and food cause changes in the oscillation frequency. We demonstrate that using these stimuli as logical inputs we can approximate logic gates using these tubes and derive combinational logic circuits by cascading the gates, with software analysis providing the output of each gate and determining the input of the following gate. Basic gates OR, AND and NOT were correct 90%, 77.8% and 91.7% of the time respectively. Derived logic circuits XOR, half adder and full adder were 70.8%, 65% and 58.8% accurate respectively. Accuracy of the combinational logic decreases as the number of gates is increased, however they are at least as accurate as previous logic approximations using spatial growth of P. polycephalum and up to 30 times as fast at computing the logical output. The results shown here demonstrate a significant advancement in organism-based computing, providing a solid basis for hybrid computers of the future.


Asunto(s)
Estimulación Eléctrica , Physarum polycephalum/fisiología
10.
Biosystems ; 119: 45-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24695059

RESUMEN

Surface electrical potential and observational growth recordings were made of a protoplasmic tube of the slime mould Physarum polycephalum in response to a multitude of stimuli with regards to sensory fusion or multisensory integration. Each stimulus was tested alone and in combination in order to evaluate for the first time the effect that multiple stimuli have on the frequency of streaming oscillation. White light caused a decrease in frequency whilst increasing the temperature and applying a food source in the form of oat flakes both increased the frequency. Simultaneously stimulating P. polycephalum with light and oat flake produced no net change in frequency, while combined light and heat stimuli showed an increase in frequency smaller than that observed for heat alone. When the two positive stimuli, oat flakes and heat, were combined, there was a net increase in frequency similar to the cumulative increases caused by the individual stimuli. Boolean logic gates were derived from the measured frequency change.


Asunto(s)
Potenciales Evocados/fisiología , Modelos Biológicos , Physarum polycephalum/fisiología , Sensación/fisiología , Alimentos , Luz , Estimulación Luminosa , Estimulación Física , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA