Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(2): e0189022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688652

RESUMEN

Roseoloviruses (human herpesvirus 6A [HHV-6A], -6B, and -7) infect >90% of the human population during early childhood and are thought to remain latent or persistent throughout the life of the host. As such, these viruses are among the most pervasive and stealthy of all viruses; they must necessarily excel at escaping immune detection throughout the life of the host, and yet, very little is known about how these viruses so successfully escape host defenses. Here, we characterize the expression, trafficking, and posttranslational modifications of the HHV6B U20 gene product, which is encoded within a block of genes unique to the roseoloviruses. HHV-6B U20 trafficked slowly through the secretory system, receiving several posttranslational modifications to its N-linked glycans, indicative of surface-expressed glycoproteins, and eventually reaching the cell surface before being internalized. Interestingly, U20 is also phosphorylated on at least one Ser, Thr, or Tyr residue. These results provide a framework to understand the role(s) of U20 in evading host defenses. IMPORTANCE The roseolovirus U20 proteins are virus-encoded integral membrane glycoproteins possessing class I major histocompatibility complex (MHC)-like folds. Surprisingly, although U20 proteins from HHV-6A and -6B share 92% identity, recent studies ascribe different functions to HHV6A U20 and HHV6B U20. HHV6A U20 was shown to downregulate NKG2D ligands, while HHV6B U20 was shown to inhibit tumor necrosis factor alpha (TNF-α)-induced apoptosis during nonproductive infection with HHV6B (E. Kofod-Olsen, K. Ross-Hansen, M. H. Schleimann, D. K. Jensen, et al., J Virol 86:11483-11492, 2012, https://doi.org/10.1128/jvi.00847-12; A. E. Chaouat, B. Seliger, O. Mandelboim, D. Schmiedel, Front Immunol 12:714799, 2021, https://doi.org/10.3389/fimmu.2021.714799). Here, we have performed cell biological and biochemical characterization of the trafficking, glycosylation, and posttranslational modifications occurring on HHV6B U20.


Asunto(s)
Glicoproteínas de Membrana , Infecciones por Roseolovirus , Proteínas Virales , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Infecciones por Roseolovirus/inmunología , Infecciones por Roseolovirus/virología , Proteínas Virales/genética , Proteínas Virales/inmunología , Evasión Inmune
2.
J Virol ; 95(14): e0162820, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952641

RESUMEN

Like all herpesviruses, the roseoloviruses (HHV6A, -6B, and -7) establish lifelong infection within their host, requiring these viruses to evade host antiviral responses. One common host-evasion strategy is the downregulation of host-encoded, surface-expressed glycoproteins. Roseoloviruses have been shown to evade the host immune response by downregulating NK-activating ligands, class I MHC, and the TCR/CD3 complex. To more globally identify glycoproteins that are differentially expressed on the surface of HHV6A-infected cells, we performed cell surface capture of N-linked glycoproteins present on the surface of T cells infected with HHV6A, and compared these to proteins present on the surface of uninfected T cells. We found that the protein tyrosine phosphatase CD45 is downregulated in T cells infected with HHV6A. We also demonstrated that CD45 is similarly downregulated in cells infected with HHV7. CD45 is essential for signaling through the T cell receptor and, as such, is necessary for developing a fully functional immune response. Interestingly, the closely related betaherpesviruses human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) have also separately evolved unique mechanisms to target CD45. While HCMV and MCMV target CD45 signaling and trafficking, HHV6A acts to downregulate CD45 transcripts. IMPORTANCE Human herpesviruses-6 and -7 infect essentially 100% of the world's population before the age of 5 and then remain latent or persistent in their host throughout life. As such, these viruses are among the most pervasive and stealthy of all viruses. Host immune cells rely on the presence of surface-expressed proteins to identify and target virus-infected cells. Here, we investigated the changes that occur to proteins expressed on the cell surface of T cells after infection with human herpesvirus-6A. We discovered that HHV-6A infection results in a reduction of CD45 on the surface of infected T cells and impaired activation in response to T cell receptor stimulation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Viral de la Expresión Génica , Herpesvirus Humano 6/genética , Herpesvirus Humano 7/genética , Antígenos Comunes de Leucocito/genética , Linfocitos T/virología , Línea Celular , Regulación hacia Abajo , Células HEK293 , Herpesvirus Humano 6/metabolismo , Herpesvirus Humano 7/metabolismo , Humanos , Estabilidad Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Mol Biol Cell ; 31(3): 196-208, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851583

RESUMEN

The human herpesvirus-7 (HHV-7) U21 glycoprotein binds to class I major histocompatibility complex (MHC) molecules in the endoplasmic reticulum (ER) and reroutes them to lysosomes. How this single viral glycoprotein efficiently redirects the U21/class I MHC complex to the lysosomal compartment is poorly understood. To investigate the trafficking of HHV-7 U21, we followed synchronous release of U21 from the ER as it traffics through the secretory system. Sorting of integral membrane proteins from the trans-Golgi network (TGN) has been shown to occur through tubular carriers that emanate from the TGN or through vesicular carriers that recruit GGA (Golgi-localized, γ-ear-containing, ARF-binding protein), clathrin adaptors, and clathrin. Here, we present evidence for the existence of a third type of Golgi-derived carrier that is vesicular, yet clathrin independent. This U21-containing carrier also carries a Golgi membrane protein engineered to form inducible oligomers. We propose that U21 employs the novel mechanism of forming oligomeric complexes with class I MHC molecules that result in sorting of the oligomeric U21/class I MHC complexes to Golgi--derived quality control carriers destined for lysosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Herpesvirus Humano 7/metabolismo , Proteínas Virales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Clatrina/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/virología , Células HeLa , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/fisiología , Humanos , Lisosomas/metabolismo , Lisosomas/fisiología , Unión Proteica , Transporte de Proteínas , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...