Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32321, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948036

RESUMEN

As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantium (HA), were subjected to comprehensive composition analysis in terms of moisture, protein, lipids, cellulose, ash, amino acids, fatty acids, non-cellulose carbohydrates and minerals. Reddish HR was much bigger than purple HA with respect to body length and weight, and their moisture fell within 82.98 %-90.92 %. The non-edible outer shell part (OS) and edible internal organs part (IO) had a dry weight ratio of around 3:2 for both two species. Generally, for both HR and HA, IO was more abundant in protein and lipids. In contrast, OS had much higher cellulose contents, confirming the better suitability of IO as a nutritional seafood. IO was richer in essential amino acids and unsaturated fatty acids, while OS had more abundant saturated fatty acids. The detected non-cellulose monosugars ranged from 0.47 % to 1.18 % and indicated the presence of some sulfated glycans. IO of HR had higher contents of essential minerals, such as Cu, Zn, and Fe, while IO of HA showed a higher K content. To sum up, this study identified the chemical composition and nutritional profile variations among different tunicate species and various dissected parts, guiding the development of specific strategies to exploit tunicates for proper food applications.

2.
Life Sci ; 352: 122868, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936604

RESUMEN

Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.


Asunto(s)
Aparato de Golgi , Neoplasias , Humanos , Aparato de Golgi/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología
3.
J Recept Signal Transduct Res ; 42(4): 325-337, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34323638

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed to treat inflammatory-related diseases, pain and fever. However, the prolong use of traditional NSAIDs leads to undesirable side effects such as gastric, ulceration, and renal toxicity due to lack of selectivity toward respective targets for COX-2, 5-LOX, and PDE4B. Thus, targeting multiple sites can reduce these adverse effects of the drugs and increase its potency. A series of methoxyflavones (F1-F5) were synthesized and investigated for their anti-inflammatory properties through molecular docking and inhibition assays. Among these flavones, only F2 exhibited selectivity toward COX-2 (Selectivity Index, SI: 3.90, COX-2 inhibition: 98.96 ± 1.47%) in comparison with celecoxib (SI: 7.54, COX-2 inhibition: 98.20 ± 2.55%). For PDEs, F3 possessed better selectivity to PDE4B (SI: 4.67) than rolipram (SI: 0.78). F5 had the best 5-LOX inhibitory activity among the flavones (33.65 ± 4.74%) but less than zileuton (90.81 ± 0.19%). Docking analysis indicated that the position of methoxy group and the substitution of halogen play role in determining the bioactivities of flavones. Interestingly, F1-F5 displayed favorable pharmacokinetic profiles and acceptable range of toxicity (IC50>70 µM) in cell lines with the exception for F1 (IC50: 16.02 ± 1.165 µM). This study generated valuable insight in designing new anti-inflammatory drug based on flavone scaffold. The newly synthesized flavones can be further developed as future therapeutic agents against inflammation.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Flavonas , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa 2/farmacología , Flavonas/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Fosfodiesterasa/farmacología , Relación Estructura-Actividad
4.
Carbohydr Res ; 508: 108395, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34280804

RESUMEN

Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.


Asunto(s)
Manosidasas , Aparato de Golgi , alfa-Manosidasa
5.
Molecules ; 24(14)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323836

RESUMEN

Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dipterocarpaceae/química , Flavonoides/química , Humanos , Estructura Molecular , Podosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas
6.
Food Chem ; 266: 200-214, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381177

RESUMEN

We have previously reported on the antioxidant potential of Artocarpus heterophyllus J33 (AhJ33) variety fruit waste from different extraction methods. In the study, the rind maceration extract (RDM) exhibited the highest phenolic and polyphenolic contents and strongest antioxidant potential measured by the DPPH assay (R2 = 0.99). In this paper, we now report on the bioassay-guided fractionation of the active ethyl acetate (EtOAC) fraction of RDM and its TOF-LCMS analysis. Seven sub-fractions resulting from the chromatographic separation of the EtOAC fraction showed radical scavenging activities between 80 and 94% inhibition. Subsequent LCMS analysis led to the identification of fifteen compounds comprising 5 phenolics and 10 non-phenolic compounds, 11 of which are reported for the first time from AhJ33 variety. Most of the identified compounds have been reported to possess antioxidant activity in many previous studies. This indicates that AhJ33 is a promising source of antioxidants for the development of food and nutraceutical products.


Asunto(s)
Antioxidantes/análisis , Artocarpus/química , Extractos Vegetales/química , Polifenoles/análisis , Bioensayo , Fraccionamiento Químico , Frutas/química , Fenoles/análisis
7.
BMC Complement Altern Med ; 16: 354, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27609190

RESUMEN

BACKGROUND: Several compounds isolated from Dryobalanops have been reported to exhibit cytotoxic effects to several cancer cell lines. This study investigated the cytotoxic effects, cell cycle arrest and mode of cell death in ampelopsin E-treated triple negative cells, MDA-MB-231. METHODS: Cytotoxicity of ampelopsin E, ampelopsin F, flexuosol A, laevifonol, Malaysianol A, Malaysianol D and nepalensinol E isolated from Dryobalanops towards human colon cancer HT-29, breast cancer MDA-MB-231 and MCF-7, alveolar carcinoma HeLa and mouse embryonic fibroblast NIH/3 T3 cells were determined by MTT assay. The cells were treated with the compounds (0.94-30 µM) for 72 h. The mode of cell death was evaluated by using an inverted light microscope and annexin V/PI analysis. Cell cycle analysis was performed by using a flow cytometer. RESULTS: Data showed that ampelopsin E was most cytotoxic toward MDA-MB-231 with the IC50 (50 % inhibition of cell viability compared to control) of 14.5 ± 0.71 µM at 72 h. Cell shrinkage, membrane blebbing and formation apoptotic bodies characteristic of apoptosis were observed following treatment with ampelopsin E. The annexin V/PI flow cytometric analysis further confirmed that ampelopsin E induced apoptosis in MDA-MB-231 cells. Cell cycle analysis revealed that ampelopsin E induced G2/M phase cell cycle arrest in the cells. CONCLUSION: Ampelopsin E induced apoptosis and cell cycle arrest in MDA-MB-231 cells. Therefore, ampelopsin E has the potential to be developed into an anticancer agent for treatment of triple negative breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Dipterocarpaceae/química , Flavonoides/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Flavonoides/química , Humanos , Extractos Vegetales/química , Neoplasias de la Mama Triple Negativas/metabolismo
8.
J Ethnopharmacol ; 187: 195-204, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27131434

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dillenia suffruticosa is traditionally used for treatment of cancerous growth including breast cancer in Malaysia. AIM OF THE STUDY: Dillenia suffruticosa is a well-known medicinal plant in Malaysia for the treatment of cancer. Nevertheless, no study has been reported the cytotoxicity of this plant towards MDA-MB-231 triple-negative breast cancer cells. The present study was designed to investigate the mode of cell death and signalling pathways of MDA-MB-231 cells treated with dichloromethane Dillenia suffruticosa root extract (DCM-DS). METHODS: Extraction of Dillenia suffruticosa root was performed by the use of sequential solvent procedure. The cytotoxicity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using an inverted light microscope and flow cytometry analysis using Annexin-V/PI. Cell cycle analysis and measurement of reactive oxygen species level were performed by using flow cytometry. The cells were treated with DCM-DS and antioxidants α-tocopherol or ascorbic acid to evaluate the involvement of ROS in the cytotoxicity of DCM-DS. Effect of DCM-DS on the expression of antioxidant, apoptotic, growth, survival genes and proteins were analysed by using GeXP-based multiplex system and Western blot, respectively. The cytotoxicity of compounds isolated from DCM-DS was evaluated towards MDA-MB-231 cells using MTT assay. RESULTS: DCM-DS induced apoptosis, G2/M phase cell cycle arrest and oxidative stress in MDA-MB-231 cells. The induction of apoptosis in MDA-MB-231 cells by DCM-DS is possibly due to the activation of pro-apoptotic JNK1 and down-regulation of anti-apoptotic ERK1, which in turn down-regulates anti-apoptotic BCL-2 to increase the BAX/BCL-2 ratio to initiate the mitochondrial apoptotic pathway. The cell cycle arrest in DCM-DS-treated MDA-MB-231 cells is possibly via p53-independent but p21-dependent pathway. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION: The data suggest the potential application of DCM-DS in the treatment of triple-negative breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Dilleniaceae , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/genética , Raíces de Plantas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/genética
9.
PLoS One ; 10(6): e0127441, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047480

RESUMEN

Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and ß-sitosterol-3-O-ß-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 µg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Dilleniaceae/química , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Acetatos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dilleniaceae/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
10.
J Ethnopharmacol ; 166: 270-8, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25797115

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer. AIM OF THE STUDY: D. suffruticosa root dichloromethane extract (DCM-DS) has been reported to induce G0/G1 phase cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 breast cancer cells. The present study was designed to investigate the involvement of p53/p21 and mitochondrial pathway in DCM-DS-treated MCF-7 cells as well as to identify the bioactive compounds responsible for the cytotoxicity of DCM-DS. MATERIALS AND METHODS: Extraction of D. suffruticosa root was performed by the use of sequential solvent procedure. GeXP-based multiplex system was employed to investigate the expression of p53, p21, Bax and Bcl-2 genes in MCF-7 cells treated with DCM-DS. The protein expression was then determined using Western blot analysis. The bioactive compounds present in DCM-DS were isolated by using column chromatography. The structure of the compounds was elucidated by using nuclear magnetic resonance spectroscopy. The cytotoxicity of the isolated compounds towards MCF-7 cells was evaluated by using MTT assay. The percentage of betulinic acid (BA) in DCM-DS was determined by HPLC analysis. RESULTS: The expression of p53 was significantly up-regulated at protein level. The expression of p21 at both gene and protein levels was significantly up-regulated upon treatment with DCM-DS, suggesting that the induction of G0/G1 phase cell cycle arrest in MCF-7 cells was via p53/p21 pathway. Bcl-2 protein was down-regulated with no change at the mRNA level, postulating that post-translational modification has occurred resulting in the degradation of Bcl-2 protein. Overall, treatment with DCM-DS increased the ratio of Bax/Bcl-2 that drove the cells to undergo apoptosis. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION: DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via p53/p21 pathway. In addition, DCM-DS induced apoptosis by increasing the ratio of Bax/Bcl-2. Betulinic acid, which is one of the major compounds, is responsible for the cytotoxicity of the DCM-DS. Therefore, BA can be used as a marker for standardisation of herbal product from D. suffruticosa. DCM-DS can also be employed as BA-rich extract from roots of D. suffruticosa for the management of breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dilleniaceae/química , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Triterpenos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Triterpenos Pentacíclicos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/efectos de los fármacos , Ácido Betulínico
11.
J Asian Nat Prod Res ; 16(11): 1099-107, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25034352

RESUMEN

A new tetramer oligostilbenoid possessing tetrahydrofuran ring, malaysianol C (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata, together with four known oligostilbenoids nepalensinol E (2), ϵ-viniferin (3), laevifonol (4), and ampelopsin F (5). The structures of isolated compounds were elucidated on the basis of spectral evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay, whereas the cytotoxic activity was tested using MTT assay. The plausible biogenetic routes of the isolated compounds are also discussed.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Benzofuranos/aislamiento & purificación , Dipterocarpaceae/química , Furanos/aislamiento & purificación , Estilbenos/aislamiento & purificación , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Benzofuranos/química , Benzofuranos/farmacología , Flavonoides/química , Furanos/química , Furanos/farmacología , Humanos , Malasia , Estructura Molecular , Corteza de la Planta/química , Extractos Vegetales/química , Tallos de la Planta/química , Estereoisomerismo , Estilbenos/química , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...