Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(36): 25046-25052, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39178239

RESUMEN

van der Waals (vdW) layered materials have been shown to have excellent optoelectronic properties relevant to photovoltaics. Despite their promise, the demonstrated efficiencies of vdW material solar cells remain low and are seldom supported by statistics or spectral quantum efficiency analysis. In this study, we utilize a p-type WSe2 absorber, forming a solar cell with a transparent front InOx electron contact, and a rear Pd reflector/hole contact. We fabricate multiple devices providing statistics for 10 devices with an average 1 sun conversion efficiency above 5%, among which a champion efficiency of 6.37% is achieved. This is the highest AM 1.5G 1 sun efficiency reported for a vdW material solar cell, with a current density supported by external quantum efficiency analysis. This cell is also shown to have near unity quantum efficiency around λ = 600 nm. This work provides support to vdW materials being considered as serious candidates for future thin-film solar cells.

2.
Nanoscale Horiz ; 8(12): 1695-1699, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37698845

RESUMEN

Defect sites present on the surface of catalysts serve a crucial role in different catalytic processes. Herein, we have investigated defect engineering within a hybrid system composed of "soft" polymer catalysts and "hard" metal nanoparticles, employing the disparity in their thermal expansions. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and mechanistic studies together reveal the formation of new abundant defects and their synergistic integrability with plasmonic enhancement within the hybrid catalyst. These active defects, co-localized with plasmonic Ag nanoparticles, promote the utilization efficiency of hot electrons generated by local plasmons, thereby enhancing the CO2 photoreduction activity while maintaining the high catalytic selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA