Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 88(24): 14396-411, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297997

RESUMEN

UNLABELLED: Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-ß in murine and human cells in the presence of an intact E3L gene. IFN-ß induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. IMPORTANCE: Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral transcription. We found that inhibition of cellular dsRNA recognition established by the virus-encoded proteins E3 and K3 can be overcome by directing viral overexpression of dsRNA early in infection without compromising replication of MVA in permissive cells. Early dsRNA induced transient activation of the cellular dsRNA sensor protein kinase R (PKR), resulting in enhanced production of interferons and cytokines in cells and mice. Enhancing the capacity of MVA to activate the innate immune system is an important approach to further improve the immunogenicity of this promising vaccine vector.


Asunto(s)
Inmunidad Innata , ARN Bicatenario/inmunología , Virus Vaccinia/inmunología , eIF-2 Quinasa/inmunología , Animales , Línea Celular , Citocinas/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Bicatenario/metabolismo , Virus Vaccinia/genética , eIF-2 Quinasa/metabolismo
2.
PLoS One ; 8(8): e73511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951355

RESUMEN

Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.


Asunto(s)
Vectores Genéticos/genética , Vectores Genéticos/inmunología , Regiones Promotoras Genéticas , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos/inmunología , Secuencia de Bases , Linfocitos T CD8-positivos/inmunología , Línea Celular , Embrión de Pollo , Femenino , Expresión Génica , Orden Génico , Vectores Genéticos/administración & dosificación , Humanos , Inmunidad Celular , Inmunidad Humoral , Memoria Inmunológica , Ratones , Datos de Secuencia Molecular , Vacunas Virales/genética , Vacunas Virales/inmunología
3.
J Virol ; 86(4): 2323-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22171261

RESUMEN

Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Virus Vaccinia/metabolismo , Virus Vaccinia/patogenicidad , Vaccinia/enzimología , Proteínas Virales/metabolismo , Animales , Línea Celular , Activación Enzimática , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Vaccinia/metabolismo , Vaccinia/virología , Virus Vaccinia/genética , Proteínas Virales/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...