Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131273

RESUMEN

Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.

2.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854068

RESUMEN

The comorbidity of autism spectrum disorders and severe gastrointestinal symptoms is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence large-effect autism risk genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons as well as their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated pathogenic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen of these genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using the high-throughput diploid frog Xenopus tropicalis , we individually target five of these genes ( SYNGAP1, CHD8, SCN2A, CHD2 , and DYRK1A ) and observe disrupted enteric neuronal progenitor migration for each. More extensive analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo , which can be ameliorated by treatment with a selective serotonin reuptake inhibitor (escitalopram) or a serotonin receptor 6 agonist, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that increasing serotonin signaling may be a productive therapeutic avenue.

3.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38187634

RESUMEN

Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.

4.
Nat Commun ; 14(1): 8077, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057346

RESUMEN

Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Neurodesarrollo , Síndrome de Tourette , Humanos , Masculino , Femenino , Trastorno por Déficit de Atención con Hiperactividad/genética , Síndrome de Tourette/genética , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética
5.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366052

RESUMEN

Gene ontology analyses of high-confidence autism spectrum disorder (ASD) risk genes highlight chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated tubulin biology and cellular proliferation. As many chromatin regulators, including the ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ and KMT5B) specifically with respect to tubulin biology. We observe that all five localize to microtubules of the mitotic spindle in vitro in human cells and in vivo in Xenopus. Investigation of CHD2 provides evidence that mutations present in individuals with ASD cause a range of microtubule-related phenotypes, including disrupted localization of the protein at mitotic spindles, cell cycle stalling, DNA damage and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among tubulin-associated proteins, suggesting broader relevance. Together, these results provide additional evidence that the role of tubulin biology and cellular proliferation in ASD warrants further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/metabolismo , Cromatina/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Tubulina (Proteína)/metabolismo , Histonas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
6.
Biol Psychiatry ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738982

RESUMEN

BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder of complex genetic architecture and is characterized by multiple motor tics and at least one vocal tic persisting for more than 1 year. METHODS: We performed a genome-wide meta-analysis integrating a novel TS cohort with previously published data, resulting in a sample size of 6133 individuals with TS and 13,565 ancestry-matched control participants. RESULTS: We identified a genome-wide significant locus on chromosome 5q15. Integration of expression quantitative trait locus, Hi-C (high-throughput chromosome conformation capture), and genome-wide association study data implicated the NR2F1 gene and associated long noncoding RNAs within the 5q15 locus. Heritability partitioning identified statistically significant enrichment in brain tissue histone marks, while polygenic risk scoring of brain volume data identified statistically significant associations with right and left thalamus volumes and right putamen volume. CONCLUSIONS: Our work presents novel insights into the neurobiology of TS, thereby opening up new directions for future studies.

7.
Nat Rev Neurosci ; 23(6): 323-341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440779

RESUMEN

More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.


Asunto(s)
Trastorno del Espectro Autista , Neurociencias , Trastorno del Espectro Autista/genética , Femenino , Genómica , Humanos , Masculino , Neurogénesis , Neuronas
9.
Neuron ; 109(5): 788-804.e8, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497602

RESUMEN

Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Corteza Cerebral/crecimiento & desarrollo , Estrógenos/fisiología , Neurogénesis , Animales , Trastorno del Espectro Autista/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Evaluación Preclínica de Medicamentos , Estrógenos/administración & dosificación , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Factores de Riesgo , Transducción de Señal , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA