Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antiviral Res ; 228: 105934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880195

RESUMEN

Herpes simplex virus type 1 (HSV-1), a neurotropic DNA virus, establishes latency in neural tissues, with reactivation causing severe consequences like encephalitis. Emerging evidence links HSV-1 infection to chronic neuroinflammation and neurodegenerative diseases. Microglia, the central nervous system's (CNS) immune sentinels, express diverse receptors, including α7 nicotinic acetylcholine receptors (α7 nAChRs), critical for immune regulation. Recent studies suggest α7 nAChR activation protects against viral infections. Here, we show that α7 nAChR agonists, choline and PNU-282987, significantly inhibit HSV-1 replication in microglial BV2 cells. Notably, this inhibition is independent of the traditional ionotropic nAChR signaling pathway. mRNA profiling revealed that choline stimulates the expression of antiviral factors, IL-1ß and Nos2, and down-regulates the apoptosis genes and type A Lamins in BV2 cells. These findings suggest a novel mechanism by which microglial α7 nAChRs restrict viral infections by regulating innate immune responses.


Asunto(s)
Colina , Herpesvirus Humano 1 , Microglía , Replicación Viral , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Microglía/virología , Microglía/efectos de los fármacos , Microglía/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/efectos de los fármacos , Animales , Línea Celular , Ratones , Replicación Viral/efectos de los fármacos , Colina/farmacología , Colina/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Benzamidas/farmacología , Inmunidad Innata , Herpes Simple/virología , Herpes Simple/metabolismo , Interleucina-1beta/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antivirales/farmacología , Agonistas Nicotínicos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética
2.
Front Immunol ; 14: 1083513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845109

RESUMEN

Clinical and pathological evidence revealed that α-synuclein (α-syn) pathology seen in PD patients starts in the gut and spreads via anatomically connected structures from the gut to the brain. Our previous study demonstrated that depletion of central norepinephrine (NE) disrupted brain immune homeostasis, producing a spatiotemporal order of neurodegeneration in the mouse brain. The purpose of this study was 1) to determine the role of peripheral noradrenergic system in the maintenance of gut immune homeostasis and in the pathogenesis of PD and 2) to investigate whether NE-depletion induced PD-like α-syn pathological changes starts from the gut. For these purposes, we investigated time-dependent changes of α-synucleinopathy and neuronal loss in the gut following a single injection of DSP-4 (a selective noradrenergic neurotoxin) to A53T-SNCA (human mutant α-syn) over-expression mice. We found DPS-4 significantly reduced the tissue level of NE and increased immune activities in gut, characterized by increased number of phagocytes and proinflammatory gene expression. Furthermore, a rapid-onset of α-syn pathology was observed in enteric neurons after 2 weeks and delayed dopaminergic neurodegeneration in the substantia nigra was detected after 3-5 months, associated with the appearance of constipation and impaired motor function, respectively. The increased α-syn pathology was only observed in large, but not in the small, intestine, which is similar to what was observed in PD patients. Mechanistic studies reveal that DSP-4-elicited upregulation of NADPH oxidase (NOX2) initially occurred only in immune cells during the acute intestinal inflammation stage, and then spread to enteric neurons and mucosal epithelial cells during the chronic inflammation stage. The upregulation of neuronal NOX2 correlated well with the extent of α-syn aggregation and subsequent enteric neuronal loss, suggesting that NOX2-generated reactive oxygen species play a key role in α-synucleinopathy. Moreover, inhibiting NOX2 by diphenyleneiodonium or restoring NE function by salmeterol (a ß2-receptor agonist) significantly attenuated colon inflammation, α-syn aggregation/propagation, and enteric neurodegeneration in the colon and ameliorated subsequent behavioral deficits. Taken together, our model of PD shows a progressive pattern of pathological changes from the gut to the brain and suggests a potential role of the noradrenergic dysfunction in the pathogenesis of PD.


Asunto(s)
Sinucleinopatías , Humanos , Animales , Ratones , Inflamación/patología , Norepinefrina/metabolismo , Colon/patología
3.
PLoS One ; 15(6): e0234455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32598368

RESUMEN

Threatened species recovery programs are increasingly turning to reintroductions to reverse biodiversity loss. Here we present a real-world example where tactics (techniques which influence post-release performance and persistence) and an adaptive management framework (which incorporates feedback between monitoring and future actions) improved reintroduction success. Across three successive trials we investigated the influence of tactics on the effective survival and post-release dispersal of endangered eastern quolls (Dasyurus viverrinus) reintroduced into Mulligans Flat Woodland Sanctuary, Australian Capital Territory. Founders were monitored for 42 days post-release, and probability of survival and post-release dispersal were tested against trial, origin, sex, den sharing and presence of pouch young. We adopted an adaptive management framework, using monitoring to facilitate rapid learning and to implement interventions that improved reintroduction success. Founders released in the first trial were less likely to survive (28.6%, n = 14) than those founders released the second (76.9%, n = 13) and third trials (87.5%, n = 8). We adapted several tactics in the second and third trials, including the selection of female-only founders to avoid elevated male mortality, and post-mating releases to reduce stress. Founders that moved dens between consecutive nights were less likely to survive, suggesting that minimising post-release dispersal can increase the probability of survival. The probability of moving dens was lower in the second and third trials, for females, and when den sharing with another founder. This study demonstrates that, through iterative trials of tactics involving monitoring and learning, adaptive management can be used to significantly improve the success of reintroduction programs.


Asunto(s)
Carnívoros/fisiología , Ecología/métodos , Especies en Peligro de Extinción , Marsupiales/fisiología , Distribución Animal , Animales , Australia , Territorio de la Capital Australiana , Seguimiento de Parámetros Ecológicos/métodos , Femenino , Masculino , Dinámica Poblacional , Probabilidad , Proyectos de Investigación
4.
J Wildl Dis ; 56(3): 547-559, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32017663

RESUMEN

We evaluated the health of 31 (eight males, 23 females) founder eastern quolls (Dasyurus viverrinus), translocated to a fenced reserve in the Australian Capital Territory between February 2016 and July 2017. Quolls were wild caught in Tasmania (16 animals) or captive bred at Mount Rothwell Biodiversity Interpretation Centre, Victoria (15 animals). Quolls were assessed for the presence of selected potential pathogens (Toxoplasma gondii, herpesviruses, Salmonella serovars, hemoprotozoa, and ectoparasites). We assessed the relationships among sex, provenance (captive or free ranging), T. gondii or herpesvirus infection, weight, and hematologic and biochemical variables. Six of 21 quolls (29%) tested were seropositive for antibodies to T. gondii. Seropositive quolls weighed significantly more and had significantly lower potassium levels, anion gaps, and urea and triglyceride levels than seronegative quolls had. Eighteen of 31 (58%) combined conjunctival-pharyngeal-cloacal swabs collected from quolls were PCR positive for a newly identified gammaherpesvirus, tentatively named dasyurid gammaherpesvirus 3. There were no significant differences among hematologic and biochemical variables or body weights from PCR-positive and PCR-negative quolls. Eighteen of 18 (100%) of rectal-swab samples were culture negative for Salmonella serovars. Three species of tick (Ixodes tasmani, Ixodes fecialis, and Ixodes holocyclus), two species of mite (Andreacus radfordi, one unidentified), and four species of flea (Pygiopsylla hoplia, Acanthopsylla rothschildi rothschildi, Uropsylla tasmanica, and Stephanocircus dasyuri), were detected on wild-caught quolls, whereas a fifth species of flea, Echidnophaga myremecobii, was detected only on captive-bred quolls. Five of 15 blood samples (33%) were positive for hemoprotozoan DNA via PCR, a novel Hepatozoon species, a novel Theileria species, Theileria paparinii, and Trypanosoma copemani were detected. Despite the presence of several potential pathogens known to be associated with disease in other marsupials, the quolls were considered to be in good general health, suitable for translocation, and a viable population was subsequently established.


Asunto(s)
Enfermedades Transmisibles/veterinaria , Conservación de los Recursos Naturales , Marsupiales , Enfermedades Parasitarias en Animales/parasitología , Animales , Femenino , Humanos , Masculino , Enfermedades Parasitarias en Animales/diagnóstico , Enfermedades Parasitarias en Animales/epidemiología , Tasmania , Victoria
5.
J Neuroinflammation ; 17(1): 64, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070376

RESUMEN

BACKGROUND: Sepsis-associated acute brain inflammation, if unresolved, may cause chronic neuroinflammation and resultant neurodegenerative diseases. However, little is known how the transition from acute to chronic neuroinflammation, which is critical for the following progressive neurodegeneration, occurs in sepsis. The goal of this study was to investigate potential immune factors regulating the transition process using a widely used endotoxemia LPS mouse model. This model shows distinct acute and chronic phases of neuroinflammation and recapitulates many cardinal features of Parkinson's disease, thus, providing a unique opportunity for studying phase transition of neuroinflammation. METHODS: C57BL/6 J, NLRP3-/-, and IL-1R1-/- mice were employed. Mild and severe endotoxemia were produced by LPS ip injection at 1 or 5 mg/kg. Neuroinflammation in vitro and in vivo was assessed with proinflammatory cytokine expression by qPCR or ELISA and microglial activation by immunohistochemical analysis. Neurodegeneration was measured by manual and stereological counts of nigral dopaminergic neurons and immunohistochemical analysis of protein nitrosylation and α-synuclein phosphorylation. RESULTS: LPS-elicited initial increases in mouse brain mRNA levels of TNFα, IL-6, IL-1ß, and MCP-1, and nigral microglial activation were not dose-related. By contrast, the delayed increase in brain mature IL-1ß levels was dependent on LPS doses and protracted nigral microglial activation was only observed in high dose of LPS-treated mice. LPS-elicited increase in brain mature IL-1ß but not IL-1α level was NLRP3-dependent. After high dose LPS treatment, deficiency of NLRP3 or IL-1R1 did not prevent the initiation of acute neuroinflammation but abolished chronic neuroinflammation. Genetic or pharmacological inhibition of the NLRP3-IL-1ß axis repressed LPS-stimulated upregulation of chronic neuroinflammatory mediators including MHC-II, NOX2, and Mac1, and protected dopaminergic neurons. Ten months after LPS-elicited severe endotoxemia, nigral persisted microglial activation, elevated nitrosylated proteins and phosphorylated α-synuclein, and significant neuronal degeneration developed in wild-type mice but not in NLRP3-/- or IL-1R1-/- mice. CONCLUSIONS: This study uncovers a novel role of the NLRP3-IL-1ß signaling pathway in gauging the severity of sepsis-associated inflammation and determining whether acute neuroinflammation will resolve or transition to low grade chronic neuroinflammation. These findings also provide novel targets for developing therapy for severe systemic infection-related neurodegeneration.


Asunto(s)
Progresión de la Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-1beta/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Enfermedades Neurodegenerativas/metabolismo , Sepsis/metabolismo , Enfermedad Aguda , Animales , Células Cultivadas , Enfermedad Crónica , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/inducido químicamente , Sepsis/inducido químicamente
6.
Brain Behav Immun ; 87: 359-368, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31923552

RESUMEN

Parkinson's disease (PD) develops over decades through spatiotemporal stages that ascend from the brainstem to the forebrain. The mechanism behind this caudo-rostral neurodegeneration remains largely undefined. In unraveling this phenomenon, we recently developed a lipopolysaccharide (LPS)-elicited chronic neuroinflammatory mouse model that displays sequential losses of neurons in brainstem, substantia nigra, hippocampus and cortex. In this study, we aimed to investigate the mechanisms of caudo-rostral neurodegeneration and focused our efforts on the earliest neurodegeneration of vulnerable noradrenergic locus coeruleus (NE-LC) neurons in the brainstem. We found that compared with neurons in other brain regions, NE-LC neurons in untreated mice displayed high levels of mitochondrial oxidative stress that was severely exacerbated in the presence of LPS-elicited chronic neuroinflammation. In agreement, NE-LC neurons in LPS-treated mice displayed early reduction of complex IV expression and mitochondrial swelling and loss of cristae. Mechanistically, the activation of the superoxide-generating enzyme NADPH oxidase (NOX2) on NE-LC neurons was essential for their heightened vulnerability during chronic neuroinflammation. LPS induced early and high expressions of NOX2 in NE-LC neurons. Genetic or pharmacological inactivation of NOX2 markedly reduced mitochondrial oxidative stress and dysfunction in LPS-treated mice. Furthermore, inhibition of NOX2 significantly ameliorated LPS-induced NE-LC neurodegeneration. More importantly, post-treatment with NOX2 inhibitor diphenyleneiodonium when NE-LC neurodegeneration had already begun, still showed high efficacy in protecting NE-LC neurons from degeneration in LPS-treated mice. This study strongly supports that chronic neuroinflammation and NOX2 expression among vulnerable neuronal populations contribute to caudo-rostral degeneration in PD.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Animales , Neuronas Dopaminérgicas , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Microglía
7.
Brain Behav Immun ; 81: 374-387, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247288

RESUMEN

The loss of central norepinephrine (NE) released by neurons of the locus coeruleus (LC) occurs with aging, and is thought to be an important factor in producing the many of the nonmotor symptoms and exacerbating the degenerative process in animal models of Parkinson's disease (PD). We hypothesize that selectively depleting noradrenergic LC neurons prior to the induction of chronic neuroinflammation may not only accelerate the rate of progressive neurodegeneration throughout the brain, but may exacerbate nonmotor and motor behavioral phenotypes that recapitulate symptoms of PD. For this reason, we used a "two-hit" mouse model whereby brain NE were initially depleted by DSP-4 one week prior to exposing mice to LPS. We found that pretreatment with DSP-4 potentiated LPS-induced sequential neurodegeneration in SNpc, hippocampus, and motor cortex, but not in VTA and caudate/putamen. Mechanistic study revealed that DSP-4 enhanced LPS-induced microglial activation and subsequently elevated neuronal oxidative stress in affected brain regions in a time-dependent pattern. To further characterize the effects of DSP-4 on non-motor and motor symptoms in the LPS model, physiological and behavioral tests were performed at different time points following injection. Consistent with the enhanced neurodegeneration, DSP-4 accelerated the progressive deficits of non-motor symptoms including hyposmia, constipation, anxiety, sociability, exaggerated startle response and impaired learning. Furthermore, notable decreases of motor functions, including decreased rotarod activity, grip strength, and gait disturbance, were observed in treated mice. In summary, our studies provided not only an accelerated "two-hit" PD model that recapitulates the features of sequential neuron loss and the progression of motor/non-motor symptoms of PD, but also revealed the critical role of early LC noradrenergic neuron damage in the pathogenesis of PD-like symptoms.


Asunto(s)
Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Neuronas Adrenérgicas/patología , Envejecimiento , Animales , Bencilaminas/farmacología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Hipocampo/patología , Inflamación/patología , Lipopolisacáridos/farmacología , Locus Coeruleus/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Actividad Motora/efectos de los fármacos , Norepinefrina/farmacología , Estrés Oxidativo
8.
Mol Neurobiol ; 56(4): 2653-2669, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30051353

RESUMEN

Environmental toxicant exposure has been strongly implicated in the pathogenesis of Parkinson's disease (PD). Clinical manifestations of non-motor and motor symptoms in PD stem from decades of progressive neurodegeneration selectively afflicting discrete neuronal populations along a caudo-rostral axis. However, recapitulating this spatiotemporal neurodegenerative pattern in rodents has been unsuccessful. The purpose of this study was to generate such animal PD models and delineate mechanism underlying the ascending neurodegeneration. Neuroinflammation, oxidative stress, and neuronal death in mice brains were measured at different times following a single systemic injection of lipopolysaccharide (LPS). We demonstrate that LPS produced an ascending neurodegeneration that temporally afflicted neurons initially in the locus coeruleus (LC), followed by substantia nigra, and lastly the primary motor cortex and hippocampus. To test the hypothesis that LPS-elicited early loss of noradrenergic LC neurons may underlie this ascending pattern, we used a neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete brain norepinephrine. DSP-4 injection resulted in a time-dependent ascending degenerative pattern similar to that generated by the LPS model. Mechanistic studies revealed that increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX2)-dependent superoxide/reactive oxygen species (ROS) production plays a key role in both LPS- and DSP-4-elicited neurotoxicity. We found that toxin-elicited chronic neuroinflammation, oxidative neuronal injuries, and neurodegeneration were greatly suppressed in mice deficient in NOX2 gene or treated with NOX2-specific inhibitor. Our studies document the first rodent PD model recapturing the ascending neurodegenerative pattern of PD patients and provide convincing evidence that the loss of brain norepinephrine is critical in initiating and maintaining chronic neuroinflammation and the discrete neurodegeneration in PD.


Asunto(s)
Encéfalo/patología , Inflamación/patología , Degeneración Nerviosa/patología , Norepinefrina/metabolismo , Estrés Oxidativo , Animales , Bencilaminas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Progresión de la Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Gliosis/patología , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Nitrosación , Compuestos Onio/farmacología , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismo
9.
J Neuroinflammation ; 13(1): 158, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27329107

RESUMEN

BACKGROUND: Misfolded α-synuclein (α-Syn) aggregates participate in the pathogenesis of synucleinopathies, such as Parkinson's disease. Whereas much is known about how the various domains within full-length α-Syn (FL-α-Syn) contribute to the formation of α-Syn aggregates and therefore to their neurotoxicity, little is known about whether the individual peptides that can be generated from α-syn, possibly as intermediate metabolites during degradation of misfolded α-Syn aggregates, are neurotoxic themselves. METHODS: A series of synthesized α-Syn peptides, corresponding to the locus in FL-α-Syn containing alanine 30, substitution of which with a proline causes a familial form of Parkinson's disease, were examined for their capacity of inducing release of microglial superoxide. The neurotoxicity of these peptides was measured according to their influence on the ability of neuroglial cultures deficient in gp91 (phox) , the catalytic unit of NADPH oxidase (Nox2), or wild-type cultures to take up (3)H-labeled dopamine and on the number of tyrosine hydroxylase-staining-positive neurons. Western blots and confocal images were utilized to analyze membrane translocation of p47 (phox) and p67 (phox) , phosphorylation of p47 (phox) and Erk1/2 kinase, and binding of α-Syn peptides to gp91 (phox) . Activation of brain microglia in mice injected with α-Syn peptides was demonstrated by immunostaining for major histocompatibility complex (MHC)-II along with qPCR for Iba-1 and MHC-II. RESULTS: We report α-Syn (29-40) as a specific peptide capable of activating microglial Nox2 to produce superoxide and cause dopaminergic neuronal damage. Administered to mice, this peptide also activated brain microglia to increase expression of MHC-II and Iba-1 and stimulated oxidation reaction. Exploring the underlying mechanisms showed that α-Syn (29-40) peptide triggered Nox2 to generate extracellular superoxide and its metabolite H2O2 by binding to the catalytic unit gp91 (phox) of Nox2; diffusing into cytosol, H2O2 activated Erk1/2 kinase to phosphorylate p47 (phox) and p67 (phox) and further activated Nox2, establishing a positive feedback loop to amplify the Nox2-mediated response. CONCLUSIONS: Collectively, our study suggests novel information regarding how α-Syn causes neuronal injury, possibly including mechanisms involving abnormal metabolites of α-Syn aggregates.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuroglía/efectos de los fármacos , Superóxidos/metabolismo , Superóxidos/toxicidad , alfa-Sinucleína/farmacología , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Antígenos de Histocompatibilidad Clase II/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Neuroglía/metabolismo , Fragmentos de Péptidos/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
J Neuroinflammation ; 13(1): 110, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27184631

RESUMEN

BACKGROUND: Clozapine, an atypical antipsychotic medication, has been effectively used to treat refractory schizophrenia. However, the clinical usage of clozapine is limited due to a high incidence of neutropenia or agranulocytosis. We previously reported that clozapine protected dopaminergic neurons through inhibition of microglial activation. The purpose of this study was to explore the neuroprotective effects of clozapine metabolites clozapine N-oxide (CNO) and N-desmethylclozapine (NDC), as well as their propensity to cause neutropenia. METHODS: The primary midbrain neuron-glia culture was applied to detect the neuroprotective and anti-inflammatory effect of clozapine and its metabolites in lipopolysaccharide (LPS) and MPP(+)-induced toxicity. And the subsequent mechanism was demonstrated by gp91 (phox) mutant cell cultures as well as microgliosis cell lines. In vivo, to confirm the neuroprotective effect of clozapine and CNO, we measured the dopaminergic neuronal loss and rotarod motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-generated mouse Parkinson's disease (PD) model. The neutropenia or agranulocytosis of clozapine and its metabolites was illustrated by white blood cell count of the treated mice. RESULTS: We found that, in midbrain neuron-glia cultures, CNO and NDC were more potent than clozapine in protecting dopaminergic neurons against LPS and MPP(+)-induced toxicity. CNO and NDC-afforded neuroprotection was linked to inhibition of microglia-mediated neuroinflammation, as demonstrated by abolished neuroprotection in microglia-depleted cultures and their capacity of inhibiting LPS-induced release of proinflammatory factors from activated microglia. NADPH oxidase (NOX2) was subsequently recognized as the main target of CNO and NDC since genetic ablation of gp91 (phox) , the catalytic subunit of NOX2, abolished their neuroprotective effects. CNO and NDC inhibited NOX2 activation through interfering with the membrane translocation of the NOX2 cytosolic subunit, p47 (phox) . The neuroprotective effects of CNO were further verified in vivo as shown by attenuation of dopaminergic neurodegeneration, motor deficits, and reactive microgliosis in MPTP-generated mouse PD model. More importantly, unlike clozapine, CNO did not lower the white blood cell count. CONCLUSIONS: Altogether, our results show that clozapine metabolites elicited neuroprotection through inactivation of microglia by inhibiting NOX2. The robust neuroprotective effects and lack of neutropenia suggest that clozapine metabolites may be promising candidates for potential therapy for neurodegenerative diseases.


Asunto(s)
Clozapina/metabolismo , Neuronas Dopaminérgicas/enzimología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Microglía/enzimología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Fármacos Neuroprotectores/metabolismo , Animales , Antipsicóticos/metabolismo , Antipsicóticos/farmacología , Clozapina/farmacología , Técnicas de Cocultivo , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , NADPH Oxidasa 2 , Fármacos Neuroprotectores/farmacología , Embarazo , Ratas , Ratas Endogámicas F344
11.
Clin Sci (Lond) ; 129(8): 757-67, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26223840

RESUMEN

The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Microglía/fisiología , NADPH Oxidasas/metabolismo , Receptores de Neuroquinina-1/metabolismo , Sustancia P/fisiología , Sustancia Negra/citología , Animales , Movimiento Celular , Proliferación Celular , Quimiotaxis , Activación Enzimática , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasa 2 , Proteína Quinasa C-delta/metabolismo , Sustancia Negra/fisiología , Superóxidos/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(15): E1926-35, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825709

RESUMEN

Malformed α-Synuclein (α-syn) aggregates in neurons are released into the extracellular space, activating microglia to induce chronic neuroinflammation that further enhances neuronal damage in α-synucleinopathies, such as Parkinson's disease. The mechanisms by which α-syn aggregates activate and recruit microglia remain unclear, however. Here we show that α-syn aggregates act as chemoattractants to direct microglia toward damaged neurons. In addition, we describe a mechanism underlying this directional migration of microglia. Specifically, chemotaxis occurs when α-syn binds to integrin CD11b, leading to H2O2 production by NADPH oxidase. H2O2 directly attracts microglia via a process in which extracellularly generated H2O2 diffuses into the cytoplasm and tyrosine protein kinase Lyn, phosphorylates the F-actin-associated protein cortactin after sensing changes in the microglial intracellular concentration of H2O2. Finally, phosphorylated cortactin mediates actin cytoskeleton rearrangement and facilitates directional cell migration. These findings have significant implications, given that α-syn-mediated microglial migration reaches beyond Parkinson's disease.


Asunto(s)
Movimiento Celular , Peróxido de Hidrógeno/metabolismo , Microglía/metabolismo , alfa-Sinucleína/metabolismo , Familia-src Quinasas/metabolismo , Animales , Animales Recién Nacidos , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Factores Quimiotácticos/metabolismo , Cortactina/metabolismo , Peróxido de Hidrógeno/farmacología , Immunoblotting , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/efectos de los fármacos , Microscopía Confocal , NADPH Oxidasa 2 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Neuronas/citología , Neuronas/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Fosforilación , Interferencia de ARN , Ratas , Transducción de Señal , alfa-Sinucleína/genética , alfa-Sinucleína/farmacología , Familia-src Quinasas/genética
13.
Glia ; 63(6): 1057-72, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25740080

RESUMEN

Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system (CNS) is unclear. This article aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. It was found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron/glia cultures. Results showed that submicromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from ß2-adrenergic receptor (ß2-AR)-deficient mice, suggesting that novel pathways other than ß2-AR are involved. To this end, It was found that submicromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (-) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism.


Asunto(s)
Encéfalo/inmunología , Neuronas Dopaminérgicas/inmunología , Microglía/enzimología , NADPH Oxidasas/metabolismo , Norepinefrina/metabolismo , Animales , Bencilaminas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Células COS , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Chlorocebus aethiops , Técnicas de Cocultivo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Homeostasis/fisiología , Lipopolisacáridos/toxicidad , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Inhibidores de la Captación de Neurotransmisores/farmacología , Ratas Endogámicas F344 , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
14.
Brain ; 138(Pt 5): 1247-62, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716193

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidase, a key superoxide-producing enzyme, plays a critical role in microglia-mediated chronic neuroinflammation and subsequent progressive dopaminergic neurodegeneration in Parkinson's disease. Although nicotinamide adenine dinucleotide phosphate oxidase-targeting anti-inflammatory therapy for Parkinson's disease has been proposed, its application in translational research remains limited. The aim of this study was to obtain preclinical evidence supporting this therapeutic strategy by testing the efficacy of an ultra-low dose of the nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium in both endotoxin (lipopolysaccharide)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using post-treatment regimens. Our data revealed that post-treatment with diphenyleneiodonium significantly attenuated progressive dopaminergic degeneration and improved rotarod activity. Remarkably, post-treatment with diphenyleneiodonium 10 months after lipopolysaccharide injection when mice had 30% loss of nigral dopaminergic neurons, showed high efficacy in protecting the remaining neuronal population and restoring motor function. Diphenyleneiodonium-elicited neuroprotection was associated with the inhibition of microglial activation, a reduction in the expression of proinflammatory factors and an attenuation of α-synuclein aggregation. A pathophysiological evaluation of diphenyleneiodonium-treated mice, including assessment of body weight, organs health, and neuronal counts, revealed no overt signs of toxicity. In summary, infusion of ultra-low dose diphenyleneiodonium potently reduced microglia-mediated chronic neuroinflammation by selectively inhibiting nicotinamide adenine dinucleotide phosphate oxidase and halted the progression of neurodegeneration in mouse models of Parkinson's disease. The robust neuroprotective effects and lack of apparent toxic side effects suggest that diphenyleneiodonium at ultra-low dose may be a promising candidate for future clinical trials in Parkinson's disease patients.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Microglía/efectos de los fármacos , NADPH Oxidasas/antagonistas & inhibidores , Degeneración Nerviosa/tratamiento farmacológico , Compuestos Onio/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo
15.
J Neurosci ; 34(37): 12490-503, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209287

RESUMEN

Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Microglía/metabolismo , NADPH Oxidasas/metabolismo , Trastornos Parkinsonianos/metabolismo , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Animales , Activación Enzimática , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología
16.
Glia ; 62(12): 2034-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25043383

RESUMEN

Activation of microglial NADPH oxidase (NOX2) plays a critical role in mediating neuroinflammation, which is closely linked with the pathogenesis of a variety of neurodegenerative diseases, including Parkinson's disease (PD). The inhibition of NOX2-generated superoxide has become an effective strategy for developing disease-modifying therapies for PD. However, the lack of specific and potent NOX2 inhibitors has hampered the progress of this approach. Diphenyleneiodonium (DPI) is a widely used, long-acting NOX2 inhibitor. However, due to its non-specificity for NOX2 and high cytotoxicity at standard doses (µM), DPI has been precluded from human studies. In this study, using ultra-low doses of DPI, we aimed to: (1) investigate whether these problems could be circumvented and (2) determine whether ultra-low doses of DPI were able to preserve its utility as a potent NOX2 inhibitor. We found that DPI at subpicomolar concentrations (10(-14) and 10(-13) M) displays no toxicity in primary midbrain neuron-glia cultures. More importantly, we observed that subpicomolar DPI inhibited phorbol myristate acetate (PMA)-induced activation of NOX2. The same concentrations of DPI did not inhibit the activities of a series of flavoprotein-containing enzymes. Furthermore, potent neuroprotective efficacy was demonstrated in a post-treatment study. When subpicomolar DPI was added to neuron-glia cultures pretreated with lipopolysaccharide, 1-methyl-4-phenylpyridinium or rotenone, it potently protected the dopaminergic neurons. In summary, DPI's unique combination of high specificity toward NOX2, low cytotoxicity and potent neuroprotective efficacy in post-treatment regimens suggests that subpicomolar DPI may be an ideal candidate for further animal studies and potential clinical trials.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Microglía/efectos de los fármacos , NADPH Oxidasas/metabolismo , Compuestos Onio/farmacología , Animales , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Células Cultivadas , Dopamina/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Mesencéfalo/citología , Proteínas de Microfilamentos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Superóxidos/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Xantina Oxidasa/metabolismo
17.
Front Biosci (Elite Ed) ; 5(1): 1-11, 2013 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-23276965

RESUMEN

Substantial evidence indicates that neuroinflammation caused by microglial activation in substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson's disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in dopaminergic neuron death. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of substantia nigra, on microglial activation and associated dopaminergic neurotoxicity were investigated. Using multiple primary mesencephalic cultures, we found that HNM caused dopaminergic neurodegeneration characterized by the decreased dopamine uptake and reduced numbers and shorted dendrites. HNM was selectively toxic to dopaminergic neurons since the other types of neurons determined by either gamma-aminobutyric acid uptake and total neuronal numbers showed smaller decrease. HNM produced modest dopaminergic neurotoxicity in neuron-enriched cultures; in contrast, much greater neurotoxicity was observed in the presence of microglia. HNM morphologically activated microglia and produced proinflammatory and neurotoxic factors. Thus, HNM can be a potent endogenous activator of microglial reactivation, mediating PD progression. Hence, inhibition of microglial reactivation can be a useful strategy for PD therapy.


Asunto(s)
Muerte Celular/fisiología , Neuronas Dopaminérgicas/fisiología , Melaninas/metabolismo , Microglía/fisiología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo , Análisis de Varianza , Animales , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Humanos , Inmunohistoquímica , Melaninas/farmacología , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/metabolismo , Embarazo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Immunol ; 190(1): 115-25, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23209319

RESUMEN

During viral infection, extracellular dsRNA is a potent signaling molecule that activates many innate immune cells, including macrophages. TLR3 is a well-known receptor for extracellular dsRNA, and internalization of extracellular dsRNA is required for endosomal TLR3 activation. Preserved inflammatory responses of TLR3-deficient macrophages to extracellular dsRNA strongly support a TLR3-independent mechanism in dsRNA-mediated immune responses. The present study demonstrated that CD11b/CD18 (Mac-1 [macrophage-1 Ag]), a surface integrin receptor, recognized extracellular dsRNA and induced macrophage immune responses. CD11b deficiency reduced inflammatory cytokine induction elicited by polyinosinic:polycytidylic acid (poly I:C; a synthetic dsRNA) in mouse sera and livers, as well as in cultured peritoneal macrophages. dsRNA-binding assay and confocal immunofluorescence showed that Mac-1, especially the CD11b subunit, interacted and colocalized with poly I:C on the surface of macrophages. Further mechanistic studies revealed two distinct signaling events following dsRNA recognition by Mac-1. First, Mac-1 facilitated poly I:C internalization through the activation of PI3K signaling and enhanced TLR3-dependent activation of IRF3 in macrophages. Second, poly I:C induced activation of phagocyte NADPH oxidase in a TLR3-independent, but Mac-1-dependent, manner. Subsequently, phagocyte NADPH oxidase-derived intracellular reactive oxygen species activated MAPK and NF-κB pathways. Our results indicate that extracellular dsRNA activates Mac-1 to enhance TLR3-dependent signaling and to trigger TLR3-independent, but Mac-1-dependent, inflammatory oxidative signaling, identifying a novel mechanistic basis for macrophages to recognize extracellular dsRNA to regulate innate immune responses. This study identifies Mac-1 as a novel surface receptor for extracellular dsRNA and implicates it as a potential therapeutic target for virus-related inflammatory diseases.


Asunto(s)
Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Espacio Extracelular/genética , Mediadores de Inflamación/fisiología , Antígeno de Macrófago-1/metabolismo , ARN Bicatenario/fisiología , Animales , Antígeno CD11b/genética , Antígenos CD18/genética , Línea Celular , Espacio Extracelular/inmunología , Espacio Extracelular/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Antígeno de Macrófago-1/genética , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 3
19.
Biochem Biophys Res Commun ; 427(3): 518-24, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23022187

RESUMEN

Ethyl acetate (EA) is an ordinary organic compound in fruits, wine and cosmetics, and used as a solvent frequently. With the recent observation in our experiment, we suspected that EA could affect immune function, in particular macrophage activity. In this paper, we tested EA's protect effect against death in Lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced endotoxic shock model in mice. And also found EA decreased the LPS-induced mRNA expression of mediators of inflammation including cyclooxygenase 2 (COX2), inducible NOS (iNOS), and tumor necrosis factor α (TNF α) in RAW264.7 cells. Consequently, EA decreased the production of, TNF α and the inflammatory agent nitric oxide (NO) in RAW264.7 cells treated with LPS. Other pro-inflammatory cytokines such as IL-1h and IL-6 were similarly decreased by EA treatment of RAW264.7 cells. The potential mechanism may associate with NF-κB activity as we shown. Taken together, these results suggest that EA has anti-inflammatory properties.


Asunto(s)
Acetatos/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Choque Séptico/tratamiento farmacológico , Animales , Línea Celular , Modelos Animales de Enfermedad , Galactosamina/inmunología , Expresión Génica/efectos de los fármacos , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Transporte de Proteínas , Choque Séptico/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis
20.
J Neuroinflammation ; 9: 32, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22340895

RESUMEN

BACKGROUND: Both (-) and (+)-naloxone attenuate inflammation-mediated neurodegeneration by inhibition of microglial activation through superoxide reduction in an opioid receptor-independent manner. Multiple lines of evidence have documented a pivotal role of overactivated NADPH oxidase (NOX2) in inflammation-mediated neurodegeneration. We hypothesized that NOX2 might be a novel action site of naloxone to mediate its anti-inflammatory actions. METHODS: Inhibition of NOX-2-derived superoxide by (-) and (+)-naloxone was measured in lipopolysaccharide (LPS)-treated midbrain neuron-glia cultures and phorbol myristate acetate (PMA)-stimulated neutrophil membranes by measuring the superoxide dismutase (SOD)-inhibitable reduction of tetrazolium salt (WST-1) or ferricytochrome c. Further, various ligand (3H-naloxone) binding assays were performed in wild type and gp91phox-/- neutrophils and transfected COS-7 and HEK293 cells. The translocation of cytosolic subunit p47phox to plasma membrane was assessed by western blot. RESULTS: Both (-) and (+)-naloxone equally inhibited LPS- and PMA-induced superoxide production with an IC50 of 1.96 and 2.52 µM, respectively. Competitive binding of 3H-naloxone with cold (-) and (+)-naloxone in microglia showed equal potency with an IC50 of 2.73 and 1.57 µM, respectively. 3H-Naloxone binding was elevated in COS-7 and HEK293 cells transfected with gp91phox; in contrast, reduced 3H-naloxone binding was found in neutrophils deficient in gp91phox or in the presence of a NOX2 inhibitor. The specificity and an increase in binding capacity of 3H-naloxone were further demonstrated by 1) an immunoprecipitation study using gp91phox antibody, and 2) activation of NOX2 by PMA. Finally, western blot studies showed that naloxone suppressed translocation of the cytosolic subunit p47phox to the membrane, leading to NOX2 inactivation. CONCLUSIONS: Strong evidence is provided indicating that NOX2 is a non-opioid novel binding site for naloxone, which is critical in mediating its inhibitory effect on microglia overactivation and superoxide production.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Naloxona/farmacología , Neuroglía/metabolismo , Neuronas/metabolismo , Superóxidos/metabolismo , Análisis de Varianza , Animales , Compuestos de Bifenilo/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoprecipitación , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/deficiencia , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/deficiencia , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Compuestos Onio/farmacología , Superóxido Dismutasa/metabolismo , Acetato de Tetradecanoilforbol , Sales de Tetrazolio/farmacología , Pruebas de Función de la Tiroides/métodos , Transfección , Tritio/farmacocinética , Xantina Oxidasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...