Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(4): 1759-1766, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227702

RESUMEN

Optical sensors and chemometric models were leveraged for the quantification of uranium(VI) (0-100 µg mL-1), europium (0-150 µg mL-1), samarium (0-250 µg mL-1), praseodymium (0-350 µg mL-1), neodymium (0-1000 µg mL-1), and HNO3 (2-4 M) with varying corrosion product (iron, nickel, and chromium) levels using laser fluorescence, Raman scattering, and ultraviolet-visible-near-infrared absorption spectra. In this paper, an efficient approach to developing and evaluating tens of thousands of partial least-squares regression (PLSR) models, built from fused optical spectra or multimodal acquisitions, is discussed. Each PLSR model was optimized with unique preprocessing combinations, and features were selected using genetic algorithm filters. The 7-factor D-optimal design training set contained just 55 samples to minimize the number of samples. The performance of PLSR models was evaluated by using an automated latent variable selection script. PLS1 regression models tailored to each species outperformed a global PLS2 model. PLS1 models built using fused spectra data and a multimodal (i.e., analyzed separately) approach yielded similar information, resulting in percent root-mean-square error of prediction values of 0.9-5.7% for the seven factors. The optical techniques and data processing strategies established in this study allow for the direct analysis of numerous species without measuring luminescence lifetimes or relying on a standard addition approach, making it optimal for near-real-time, in situ measurements. Nuclear reactor modeling helped bound training set conditions and identified elemental ratios of lanthanide fission products to characterize the burnup of irradiated nuclear fuel. Leveraging fluorescence, spectrophotometry, experimental design, and chemometrics can enable the remote quantification and characterization of complex systems with numerous species, monitor system performance, help identify the source of materials, and enable rapid high-throughput experiments in a variety of industrial processes and fundamental studies.

2.
Appl Opt ; 62(23): G60-G68, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707064

RESUMEN

Space-based quantum networks provide a means for near-term long-distance transmission of quantum information. This article analyzed the performance of a downlink quantum network between a low-Earth-orbit satellite and an observatory operating in less-than-ideal atmospheric conditions. The effects from fog, haze, and a nuclear disturbed environment on the long-range distribution of quantum states were investigated. A density matrix that estimates the quantum state by capturing the effects from increased signal loss and elevated background noise to estimate the state fidelity of the transmitted quantum state was developed. It was found that the nuclear disturbed environment and other atmospheric effects have a degrading effect on the quantum state. These environments impede the ability to perform quantum communications for the duration of the effects. In the case of the nuclear disturbed environment, the nuclear effects subside quickly, and network performance should return to normal by the next satellite pass.

3.
Opt Express ; 31(3): 3881-3896, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785370

RESUMEN

This paper investigates the effects of a nuclear-disturbed environment on the transmission of electromagnetic (EM) waves through the atmosphere. An atmospheric nuclear detonation can produce heightened free electron densities in the surrounding atmosphere that can disrupt EM waves that propagate through the disturbed region. Radiation transport models simulated the ionization and free electron densities created in the atmosphere from a 1 MT detonation at heights of burst of 5 km, 25 km, and 75 km. Recombination rates for the free electrons in the atmosphere were applied, from previous work in the literature, to determine the nuclear-induced electron densities as a function of time and space after the detonation. A ray-tracing algorithm was applied to determine the refraction and reflection of waves propagating in the different nuclear-disturbed environments. The simulation results show that the free electron plasma created from an atmospheric nuclear detonation depend on the height of burst of the weapon, the weapon yield, and the time after detonation. Detonations at higher altitudes produce higher free electron densities for greater durations and over larger ranges. The larger the free electron densities, the greater the impact on EM wavelengths in regards to refraction, reflection, and absorption in the atmosphere. An analysis of modern infrastructure and the effects of nuclear-disturbed atmospheres on different signal wavelengths and systems is discussed.

4.
Opt Express ; 29(17): 27254-27277, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615145

RESUMEN

This manuscript investigates the potential effect of a nuclear-disturbed atmospheric environment on the signal attenuation of a ground/satellite transmitter/receiver system for both classical optical and quantum communications applications. Attenuation of a signal transmitted through the rising nuclear cloud and the subsequently transported debris is modeled climatologically for surface-level detonations of 10 kt, 100 kt, and 1 Mt. Attenuation statistics were collected as a function of time after detonation. These loss terms were compared to normal loss sources such as clouds, smoke from fires, and clear sky operation. Finally, the loss was related to the degradation of transmitted entanglement derived from Bayesian mean estimation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...