Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(5): e0125823, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25932918

RESUMEN

Hypochlorite is a reactive oxygen species that is worldwide as an antibacterial disinfectant. Hypochlorite exposure is known to cause oxidative damage to DNA and proteins. As a response to these effects, the metabolite profiles of organisms treated with sub-lethal doses of hypochlorite are assumed to be severely modified; however, the nature of these changes is hardly understood. Therefore, using nuclear magnetic resonance spectroscopy and gas chromatography-coupled mass spectrometry, we analyzed the time-dependent impact of hypochlorite exposure with a sub-lethal concentration (50 µM) on the metabolite profile of the Escherichia coli strain MG1655. Principle component analysis clearly distinguished between the metabolite profiles of bacteria treated for 0, 5, 10, 20, 40, or 60 min. Major changes in the relative amounts of fatty acids, acetic acid, and formic acid occurred within the first 5 min. Comparative gas chromatography-coupled mass spectrometry analyses revealed that the amounts of free methionine and alanine were significantly decreased in the treated cells, demonstrating their susceptibility to hypochlorite exposure. The concentrations of succinate, urea, orotic acid, 2-aminobutyric acid, and 2-hydroxybutyric acid were also severely affected, indicating general changes in the metabolic network by hypochlorite. However, most metabolite levels relaxed to the reference values of untreated cells after 40-60 min, reflecting the capability of E. coli to rapidly adapt to environmental stress factors such as the presence of sub-lethal oxidant levels.


Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácido Hipocloroso/farmacología , Metabolómica , Aminoácidos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Análisis de Componente Principal , Espectroscopía de Protones por Resonancia Magnética , Solventes , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
2.
Microbiology (Reading) ; 160(Pt 8): 1690-1704, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899627

RESUMEN

Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.


Asunto(s)
Evolución Biológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Regulón , Proteínas Represoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Estrés Oxidativo , Proteínas Represoras/genética
3.
Biochim Biophys Acta ; 1844(8): 1367-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24418392

RESUMEN

Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.


Asunto(s)
Fenómenos Fisiológicos Celulares , Metionina/química , Oxidación-Reducción , Animales , Humanos , Transducción de Señal
4.
J Biol Chem ; 289(2): 977-86, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24275662

RESUMEN

Hypochlorous acid (HOCl) is an important component of the immune system and is produced by neutrophils to kill invading microorganisms. The transcription factor HypT is specifically activated by HOCl by methionine oxidation and protects Escherichia coli cells from the detrimental effects of HOCl. HypT forms dodecameric ring-like oligomers. Binding of HypT to DNA induces dissociation of the dodecamers into dimers and tetramers, thus forming the DNA-binding species. To dissect HypT dissociation, binding to DNA, and activation, we aimed to dissociate the dodecamers independently of DNA and to analyze HOCl-dependent activation in vitro. We found that HypT dodecamers dissociated into tetramers in the presence of l-arginine and NaCl, which was reversible upon dilution of the additive. Making use of the reversible dissociation, we generated mixed assemblies consisting of wild-type and mutant HypT subunits and determined that mutant subunits with reduced thermal stability were stabilized by wild-type HypT in the mixed assembly. HypT tetramers, as present at high NaCl concentrations, were stabilized against thermal unfolding and aggregation triggered by high HOCl concentrations. Importantly, in vitro activation by HOCl of HypT tetramers was completed within 1 min, whereas activation of dodecamers required 1 h for completion. Furthermore, activation of HypT tetramers required stoichiometric amounts of HOCl instead of an excess of HOCl, as observed for dodecamers. This supports the idea that small HypT oligomers are the activation-competent species, whereas the dodecamers are a storage form. Our study reveals the importance of the dynamic oligomeric state for HypT activation by HOCl.


Asunto(s)
Proteínas de Escherichia coli/química , Ácido Hipocloroso/farmacología , Multimerización de Proteína/efectos de los fármacos , Proteínas Represoras/química , Arginina/metabolismo , Arginina/farmacología , Western Blotting , Dicroismo Circular , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Polarización de Fluorescencia , Ácido Hipocloroso/metabolismo , Cinética , Metionina/metabolismo , Mutación , Oxidación-Reducción/efectos de los fármacos , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Temperatura , Factores de Tiempo
5.
PLoS One ; 8(10): e75683, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116067

RESUMEN

Reactive oxygen species are important components of the immune response. Hypochlorite (HOCl) is produced by neutrophils to kill invading microorganisms. The bactericidal activity of HOCl is due to proteome-wide unfolding and oxidation of proteins at cysteine and methionine residues. Escherichia coli cells are protected from HOCl-killing by the previously identified dodecameric transcription factor HypT (YjiE). Here, we aimed to unravel whether HOCl activates HypT directly or via a reaction product of HOCl with a cellular component. Bacterial viability assays and analysis of target gene regulation indicate that HypT is highly specific to activation by HOCl and that no reaction products of HOCl such as monochloramine, hydroxyl radicals, or methionine sulfoxide activate HypT in vivo. Surprisingly, purified HypT lost its DNA-binding activity upon incubation with HOCl or reaction products that oxidize HypT to form a disulfide-linked dimer, and regained DNA-binding activity upon reduction. Thus, we postulate that the cysteines in HypT contribute to control the DNA-binding activity of HypT in vitro. HypT contains five cysteine residues; a HypT mutant with all cysteines substituted by serine is aggregation-prone and forms tetramers in addition to the typical dodecamers. Using single and multiple cysteine-to-serine mutants, we identified Cys150 to be required for stability and Cys4 being important for oligomerization of HypT to dodecamers. Further, oxidation of Cys4 is responsible for the loss of DNA-binding of HypT upon oxidation in vitro. It appears that Cys4 oxidation upon conditions that are insufficient to stimulate the DNA-binding activity of HypT prevents unproductive interactions of HypT with DNA. Thus, Cys4 oxidation may be a check point in the activation process of HypT.


Asunto(s)
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética
6.
Proc Natl Acad Sci U S A ; 110(23): 9493-8, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690622

RESUMEN

Oxidant-mediated antibacterial response systems are broadly used to control bacterial proliferation. Hypochlorite (HOCl) is an important component of the innate immune system produced in neutrophils and specific epithelia. Its antimicrobial activity is due to damaging cellular macromolecules. Little is known about how bacteria escape HOCl-inflicted damage. Recently, the transcription factor YjiE was identified that specifically protects Escherichia coli from HOCl killing. According to its function, YjiE is now renamed HypT (hypochlorite-responsive transcription factor). Here we unravel that HypT is activated by methionine oxidation to methionine sulfoxide. Interestingly, so far only inactivation of cellular proteins by methionine oxidation has been reported. Mutational analysis revealed three methionines that are essential to confer HOCl resistance. Their simultaneous substitution by glutamine, mimicking the methionine sulfoxide state, increased the viability of E. coli cells upon HOCl stress. Triple glutamine substitution generates a constitutively active HypT that regulates target genes independently of HOCl stress and permanently down-regulates intracellular iron levels. Inactivation of HypT depends on the methionine sulfoxide reductases A/B. Thus, microbial protection mechanisms have evolved along the evolution of antimicrobial control systems, allowing bacteria to survive within the host environment.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/inmunología , Ácido Hipocloroso/metabolismo , Inmunidad Innata/inmunología , Metionina/metabolismo , Modelos Moleculares , Estrés Oxidativo/inmunología , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Cromatografía en Gel , Análisis Mutacional de ADN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Hierro/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/química , Proteínas Represoras/genética , Ultracentrifugación
7.
J Biol Chem ; 287(9): 6892-903, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22223481

RESUMEN

Hypochlorite is a powerful oxidant produced by neutrophils to kill invading microorganisms. Despite this important physiological role of HOCl in fighting bacterial infections, no hypochlorite-specific stress response has been identified yet. Here, we identified a hypochlorite-responsive transcription factor, YjiE, which is conserved in proteobacteria and eukaryotes. YjiE forms unusual dodecameric ring-like structures in vitro that undergo large DNA-induced conformational changes to form dimers and tetramers as shown by transmission electron microscopy and analytical ultracentrifugation. Such smaller oligomers are predominant in hypochlorite-stressed cells and are the active species as shown by fluorescence anisotropy and analytical ultracentrifugation. YjiE regulates a large number of genes upon hypochlorite stress. Among them are genes involved in cysteine, methionine biosynthesis, and sulfur metabolism (up-regulated) and genes involved in iron acquisition and homeostasis (down-regulated), thus supposedly replenishing oxidized metabolites and decreasing the hypochlorite-mediated amplification of intracellular reactive oxygen species. As a result, YjiE specifically confers hypochlorite resistance to E. coli cells. Thus, to our knowledge, YjiE is the first described hypochlorite-specific transcription factor.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácido Hipocloroso/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
8.
Protein Sci ; 20(3): 588-96, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21308844

RESUMEN

Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.


Asunto(s)
Disulfuros/química , Péptidos/metabolismo , Proinsulina/química , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Humanos , Isomerismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Proinsulina/metabolismo , Desnaturalización Proteica , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína
9.
J Biol Chem ; 285(25): 19029-34, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20406805

RESUMEN

Evolution depends on the acquisition of genomic mutations that increase cellular fitness. Here, we evolved Escherichia coli MG1655 cells to grow at extreme temperatures. We obtained a maximum growth temperature of 48.5 degrees C, which was not increased further upon continuous cultivation at this temperature for >600 generations. Despite a permanently induced heat shock response in thermoresistant cells, only exquisitely high GroEL/GroES levels are essential for growth at 48.5 degrees C. They depend on the presence of lysyl-tRNA-synthetase, LysU, because deletion of lysU rendered thermoresistant cells thermosensitive. Our data suggest that GroEL/GroES are especially required for the folding of mutated proteins generated during evolution. GroEL/GroES therefore appear as mediators of evolution of extremely heat-resistant E. coli cells.


Asunto(s)
Escherichia coli/genética , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Chaperoninas/química , Electroforesis en Gel Bidimensional/métodos , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Proteínas de Choque Térmico/metabolismo , Calor , Modelos Biológicos , Mutación , Proteínas/química , Proteómica/métodos , Temperatura , Factores de Tiempo
10.
Microbiology (Reading) ; 155(Pt 5): 1680-1689, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19372151

RESUMEN

Hypochlorous acid (HOCl), the active ingredient of household bleach, functions as a powerful antimicrobial that is used not only in numerous industrial applications but also in mammalian host defence. Here we show that multicopy expression of cpdA, encoding the cAMP phosphodiesterase, leads to a dramatically increased resistance of Escherichia coli to HOCl stress as well as to the unrelated hydrogen peroxide (H(2)O(2)) stress. This general oxidative stress resistance is apparently caused by the CpdA-mediated decrease in cellular cAMP levels, which leads to the partial inactivation of the global transcriptional regulator cAMP receptor protein (CRP). Downregulation of CRP in turn causes the derepression of rpoS, encoding the alternative sigma factor sigma(S), which activates the general stress response in E. coli. We found that these highly oxidative stress-resistant cells have a substantially increased capacity to combat HOCl-mediated insults and to degrade reactive oxygen species. Mutational analysis revealed that the DNA-protecting protein Dps, the catalase KatE, and the exonuclease III XthA play the predominant roles in conferring the high resistance of rpoS-overexpressing strains towards HOCl and H(2)O(2) stress. Our results demonstrate the close regulatory interplay between cellular cAMP levels, sigma(S) activity and oxidative stress resistance in E. coli.


Asunto(s)
Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Farmacorresistencia Bacteriana , Escherichia coli/metabolismo , Estrés Oxidativo , Factor sigma/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/farmacología , Ácido Hipocloroso/farmacología , Factor sigma/genética
11.
Nat Struct Mol Biol ; 14(6): 556-63, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17515905

RESUMEN

The redox-regulated chaperone Hsp33 is specifically activated upon exposure of cells to peroxide stress at elevated temperatures. Here we show that Hsp33 harbors two interdependent stress-sensing regions located in the C-terminal redox-switch domain of Hsp33: a zinc center sensing peroxide stress conditions and an adjacent linker region responding to unfolding conditions. Neither of these sensors works sufficiently in the absence of the other, making the simultaneous presence of both stress conditions a necessary requirement for Hsp33's full activation. Upon activation, Hsp33's redox-switch domain adopts a natively unfolded conformation, thereby exposing hydrophobic surfaces in its N-terminal substrate-binding domain. The specific activation of Hsp33 by the oxidative unfolding of its redox-switch domain makes this chaperone optimally suited to quickly respond to oxidative stress conditions that lead to protein unfolding.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Estrés Oxidativo/fisiología , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Fluorescencia , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas , Chaperonas Moleculares/metabolismo , Mutación/genética , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Temperatura
12.
Mol Cell ; 17(3): 381-92, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15694339

RESUMEN

DnaK/DnaJ/GrpE constitutes the primary chaperone machinery in E. coli that functions to protect proteins against heat-induced protein aggregation. Surprisingly, upon exposure of cells to reactive oxygen species at elevated temperature, proteins are no longer protected by the DnaK system. Instead, they bind now to the redox-regulated chaperone Hsp33, which is activated by the same conditions that inactivate DnaK. The inactivation of DnaK seems to be induced by the dramatic decrease in intracellular ATP levels that occurs upon exposure of cells to reactive oxygen species. This appears to render DnaK's N-terminal ATPase domain nucleotide depleted and thermolabile. DnaK's N terminus reversibly unfolds in vivo, and DnaK loses its ability to protect proteins against stress-induced aggregation. Now, the ATP-independent chaperone holdase Hsp33 binds to a large number of cellular proteins and prevents their irreversible aggregation. Upon return to nonstress conditions, Hsp33 becomes inactivated while DnaK reactivates and resumes its task to support protein folding.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Cinética , Modelos Biológicos , Chaperonas Moleculares/genética , Oxidación-Reducción , Estrés Oxidativo , Desnaturalización Proteica , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo
13.
Crit Rev Biochem Mol Biol ; 39(5-6): 297-317, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15763707

RESUMEN

Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions-the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.


Asunto(s)
Chaperonas Moleculares/metabolismo , Animales , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/química , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Temperatura
14.
Anal Biochem ; 310(2): 148-55, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12423632

RESUMEN

The production of human proinsulin in Escherichia coli usually leads to the formation of inclusion bodies. As a consequence, the recombinant protein must be isolated, refolded under suitable redox conditions, and enzymatically converted to the biologically active insulin. In this study we describe a detailed in vitro renaturation protocol for human proinsulin that includes native structure formation and the enzymatic conversion to mature insulin. We used a His(8)-Arg-proinsulin that was renatured from the completely reduced and denatured state in the presence of a cysteine/cystine redox couple. The refolding process was completed after 10-30 min and was shown to be strongly dependent on the redox potential and the pH value, but not on the temperature. Refolding yields of 60-70% could be obtained even at high concentrations of denaturant (3M guanidinium-HCl or 4M urea) and protein concentrations of 0.5mg/ml. By stepwise renaturation a concentration of about 6 mg/ml of native proinsulin was achieved. The refolded proinsulin was correctly disulfide-bonded and native and monomeric as shown by RP-HPLC, ELISA, circular dichroism, and analytical gel filtration. Treatment of the renatured proinsulin with trypsin and carboxypeptidase B yielded mature insulin.


Asunto(s)
Insulina/química , Proinsulina/química , Carboxipeptidasa B , Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular , Cisteína/química , Cistina/química , Ensayo de Inmunoadsorción Enzimática , Guanidina/química , Humanos , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Oxidación-Reducción , Proinsulina/metabolismo , Desnaturalización Proteica , Renaturación de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Tripsina/química , Tripsina/metabolismo , Urea/química
15.
FEMS Microbiol Lett ; 213(2): 225-30, 2002 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12167542

RESUMEN

Recombinant production of native proinsulin in the periplasm of Escherichia coli is limited by formation of the correct disulfide bonds and inclusion body formation. These limitations can be overcome during in vitro folding of proinsulin by using a redox system and also protein disulfide isomerase. Here, we added a redox active substance, Vectrase-P, to the cultivation medium of E. coli cells producing proinsulin. We show that this synthetic dithiol partially mimicking the redox activity of protein disulfide isomerase provides an improved redox situation in the periplasm and, therefore, provides optimum conditions for folding of proinsulin in that cell compartment resulting in an increase in yield of 60%. The in vivo results were confirmed by analyzing in vitro folding of proinsulin in the presence of the dithiol Vectrase-P.


Asunto(s)
Ciclohexanos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proinsulina/biosíntesis , Compuestos de Sulfhidrilo/farmacología , Tolueno/análogos & derivados , Tolueno/farmacología , Escherichia coli/genética , Técnicas In Vitro , Proinsulina/química , Proinsulina/genética , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/genética , Tolueno/síntesis química , Tolueno/química
16.
J Biol Chem ; 277(1): 310-7, 2002 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11694508

RESUMEN

Protein-disulfide isomerase (PDI) catalyzes the formation, rearrangement, and breakage of disulfide bonds and is capable of binding peptides and unfolded proteins in a chaperone-like manner. In this study we examined which of these functions are required to facilitate efficient refolding of denatured and reduced proinsulin. In our model system, PDI and also a PDI mutant having only one active site increased the rate of oxidative folding when present in catalytic amounts. PDI variants that are completely devoid of isomerase activity are not able to accelerate proinsulin folding, but can increase the yield of refolding, indicating that they act as a chaperone. Maximum refolding yields, however, are only achieved with wild-type PDI. Using genistein, an inhibitor for the peptide-binding site, the ability of PDI to prevent aggregation of folding proinsulin was significantly suppressed. The present results suggest that PDI is acting both as an isomerase and as a chaperone during folding and disulfide bond formation of proinsulin.


Asunto(s)
Chaperonas Moleculares/fisiología , Proinsulina/química , Proteína Disulfuro Isomerasas/fisiología , Pliegue de Proteína , Catálisis , Genisteína/farmacología , Humanos , Proteína Disulfuro Isomerasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA