Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
7.
Methods Mol Biol ; 1213: 257-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25173389

RESUMEN

Spinal cord injured experimental animals are widely used for studying pathophysiological processes after central nervous system acute traumatic lesion and elaborating therapeutic solutions, some of them based on stem cell transplantation. Here, we describe a protocol of spinal cord contusion in C57BL/6J mice, directly followed by bone marrow stromal stem cells transplantation. This model allows for the characterization of neuroprotective and neurorestorative abilities of these stem cells in a context of spinal cord trauma.


Asunto(s)
Trasplante de Médula Ósea , Células Madre Mesenquimatosas/citología , Traumatismos de la Médula Espinal/terapia , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Femenino , Ratones , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
8.
Stem Cells ; 32(4): 829-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24155224

RESUMEN

Since several years, adult/perinatal mesenchymal and neural crest stem cells have been widely used to help experimental animal to recover from spinal cord injury. More interestingly, recent clinical trials confirmed the beneficial effect of those stem cells, which improve functional score of patients suffering from such lesions. However, a complete understanding of the mechanisms of stem cell-induced recovery is seriously lacking. Indeed, spinal cord injuries gathered a wide range of biochemical and physiopathological events (such as inflammation, oxidative stress, axonal damage, demyelination, etc.) and the genuine healing process after cell transplantation is not sufficiently defined. This review aims to sum up recent data about cell therapy in spinal cord lesions using mesenchymal or recently identified neural crest stem cells, by describing precisely which physiopathological parameter is affected and the exact processes underlying the observed changes. Overall, although significant advances are acknowledged, it seems that further deep mechanistic investigation is needed for the development of optimized and efficient cell-based therapy protocols.


Asunto(s)
Células Madre Adultas/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Cresta Neural , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Humanos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
9.
PLoS One ; 8(5): e64723, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741377

RESUMEN

Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management.


Asunto(s)
Células de la Médula Ósea/citología , Lesiones Encefálicas/terapia , Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Trasplante de Células Madre , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Células de la Médula Ósea/fisiología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/patología , Muerte Celular , Neuronas Dopaminérgicas/patología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/fisiología , Insuficiencia del Tratamiento
10.
Stem Cells Transl Med ; 2(4): 284-96, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23486833

RESUMEN

Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.


Asunto(s)
Células Madre Adultas/citología , Células Madre Mesenquimatosas/citología , Enfermedades del Sistema Nervioso/terapia , Cresta Neural/citología , Animales , Modelos Animales de Enfermedad , Humanos , Trasplante de Células Madre
11.
J Biol Chem ; 288(11): 7438-7449, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23344955

RESUMEN

α-Synuclein is an abundant presynaptic protein and a primary component of Lewy bodies in Parkinson disease. Although its pathogenic role remains unclear, in healthy nerve terminals α-synuclein undergoes a cycle of membrane binding and dissociation. An α-synuclein binding assay was used to screen for vesicle proteins involved in α-synuclein membrane interactions and showed that antibodies directed to the Ras-related GTPase Rab3a and its chaperone RabGDI abrogated α-synuclein membrane binding. Biochemical analyses, including density gradient sedimentation and co-immunoprecipitation, suggested that α-synuclein interacts with membrane-associated GTP-bound Rab3a but not to cytosolic GDP-Rab3a. Accumulation of membrane-bound α-synuclein was induced by the expression of a GTPase-deficient Rab3a mutant, by a dominant-negative GDP dissociation inhibitor mutant unable to recycle Rab3a off membranes, and by Hsp90 inhibitors, radicicol and geldanamycin, which are known to inhibit Rab3a dissociation from membranes. Thus, all treatments that inhibited Rab3a recycling also increased α-synuclein sequestration on intracellular membranes. Our results suggest that membrane-bound GTP-Rab3a stabilizes α-synuclein on synaptic vesicles and that the GDP dissociation inhibitor·Hsp90 complex that controls Rab3a membrane dissociation also regulates α-synuclein dissociation during synaptic activity.


Asunto(s)
Membrana Celular/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Epítopos/química , Glicerol/química , Guanosina Trifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Fracciones Subcelulares/metabolismo , Sinaptosomas/metabolismo , alfa-Sinucleína/química
12.
PLoS One ; 7(10): e46425, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071568

RESUMEN

Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application.


Asunto(s)
Células de la Médula Ósea/citología , Proliferación Celular , Transformación Celular Neoplásica , Cresta Neural/citología , Trasplante de Células Madre , Animales , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos
13.
J Biomed Biotechnol ; 2012: 601560, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319243

RESUMEN

The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/trasplante , Enfermedades Neurodegenerativas/terapia , Adulto , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Neuronas/citología , Medicina Regenerativa , Trasplante de Células Madre
14.
Cell Mol Life Sci ; 69(15): 2593-608, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22349262

RESUMEN

The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases.


Asunto(s)
Células Madre Adultas/citología , Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Células Madre Adultas/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Proteínas de Filamentos Intermediarios/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Cresta Neural/citología , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Proteoma , Ratas , Transducción de Señal , Transcriptoma
15.
J Biol Chem ; 286(41): 35863-35873, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21849493

RESUMEN

In the healthy brain, less than 5% of α-synuclein (α-syn) is phosphorylated at serine 129 (Ser(P)-129). However, within Parkinson disease (PD) Lewy bodies, 89% of α-syn is Ser(P)-129. The effects of Ser(P)-129 modification on α-syn distribution and solubility are poorly understood. As α-syn normally exists in both membrane-bound and cytosolic compartments, we examined the binding and dissociation of Ser(P)-129 α-syn and analyzed the effects of manipulating Ser(P)-129 levels on α-syn membrane interactions using synaptosomal membranes and neural precursor cells from α-syn-deficient mice or transgenic mice expressing human α-syn. We first evaluated the recovery of the Ser(P)-129 epitope following either α-syn membrane binding or dissociation. We demonstrate a rapid turnover of Ser(P)-129 during both binding to and dissociation from synaptic membranes. Although the membrane binding of WT α-syn was insensitive to modulation of Ser(P)-129 levels by multiple strategies (the use of phosphomimic S129D and nonphosphorylated S129A α-syn mutants; by enzymatic dephosphorylation of Ser(P)-129 or proteasome inhibitor-induced elevation in Ser(P)-129; or by inhibition or stable overexpression of PLK2), PD mutant Ser(P)-129 α-syn showed a preferential membrane association compared with WT Ser(P)-129 α-syn. Collectively, these data suggest that phosphorylation at Ser-129 is dynamic and that the subcellular distribution of α-syn bearing PD-linked mutations, A30P or A53T, is influenced by the phosphorylation state of Ser-129.


Asunto(s)
Membranas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Epítopos/genética , Epítopos/metabolismo , Humanos , Cuerpos de Lewy/genética , Cuerpos de Lewy/metabolismo , Ratones , Ratones Noqueados , Mutación Missense , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Unión Proteica/genética , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Membranas Sinápticas/genética , alfa-Sinucleína/genética
16.
BMC Neurosci ; 9: 92, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18808659

RESUMEN

BACKGROUND: Alpha-Synuclein (alpha-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the alpha-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of alpha-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. RESULTS: In the present study, we analysed the ability of cytosolic factors to regulate alpha-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant alpha-syn. To characterize cytosolic factor(s) that modulate alpha-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate alpha-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T alpha-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance alpha-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P alpha-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. CONCLUSION: These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant alpha-syn membrane binding, and could represent potential targets to influence alpha-syn solubility in brain.


Asunto(s)
Citosol/metabolismo , Mutación , Membranas Sinápticas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Química Encefálica , Calcio/análisis , Calcio/metabolismo , Citosol/química , Genotipo , Humanos , Lípidos/análisis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/análisis , Factor de Activación Plaquetaria/metabolismo , Unión Proteica , Sinaptosomas/metabolismo , alfa-Sinucleína/análisis
17.
Mol Cell Neurosci ; 37(3): 454-70, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18083596

RESUMEN

Neural and mesenchymal stem cells have been proposed as alternative sources of cells for transplantation into the brain in neurodegenerative disorders. However, the endogenous factors controlling their engraftment within the injured parenchyma remain ill-defined. Here, we demonstrate significant engraftment of undifferentiated exogenous mesenchymal or neural stem cells throughout the lesioned area in a rat model for Huntington's disease, as late as 8 weeks post-transplantation. We show that stem cell factor (SCF), strongly up-regulated within host cells in the damaged striatum, is able to activate the SCF receptor c-kit and its signaling pathway and to promote the migration and proliferation of mesenchymal and neural stem cells in vitro. Furthermore, c-kit receptor blockade alters neural stem cell distribution within the lesioned striatum. Host SCF expression is observed in atypical cells expressing glial fibrillary acidic protein and doublecortin in the lesioned striatum and in migrating doublecortin-positive progenitors. Taken together, these data demonstrate that SCF produced in situ in the lesioned striatum is an important factor in promoting the engraftment of stem cells within the lesioned brain.


Asunto(s)
Enfermedad de Huntington/cirugía , Neuronas/fisiología , Factor de Células Madre/farmacología , Trasplante de Células Madre/métodos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Análisis de Varianza , Animales , Recuento de Células/métodos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteína Doblecortina , Embrión de Mamíferos , Enfermedad de Huntington/etiología , Enfermedad de Huntington/patología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Compuestos Orgánicos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ratas , Ratas Wistar , Células Madre/clasificación , Factores de Tiempo
18.
BMC Neurosci ; 8: 104, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18053121

RESUMEN

BACKGROUND: Bone marrow stromal cells and radial glia are two stem cell types with neural phenotypic plasticity. Bone marrow mesenchymal stem cells can differentiate into osteocytes, chondrocytes and adipocytes, but can also differentiate into non-mesenchymal cell, i.e. neural cells in appropriate in vivo and in vitro experimental conditions. Likewise, radial glial cells are the progenitors of many neurons in the developing cortex, but can also generate astrocytes. Both cell types express nestin, an intermediate filament protein which is the hallmark of neural precursors. RESULTS: In this study, we demonstrate that thrombin, a multifunctional serine protease, stimulates the growth of radial glial cells (RG) and mesenchymal stem cells (MSCs) in a dose-dependent manner. In RG, the mitogenic effect of thrombin is correlated with increased expression of nestin but in MSCs, this mitogenic effect is associated with nestin down-regulation. Both cell types express the PAR-1 type receptor for Thrombin and the effect of Thrombin on both cell types can be mimicked by its analogue TRAP-6 activating specifically this receptor subtype or by serum which contains various amount of thrombin. Moreover, we also demonstrate that serum deprivation-induced expression of nestin in MSCs is inhibited by high cell density (> 50,000 cells/cm2). CONCLUSION: This work shows that thrombin stimulates the growth of both RG and MSCs and that nestin expression by MSCs and RG is regulated in opposite manner by thrombin in vitro. Thrombin effect is thus associated in both cell types with a proliferating, undifferentiated state but in RG this involves the induction of nestin expression, a marker of immaturity for neural progenitors. In MSCs however, nestin expression, as it corresponds to a progression from the mesenchymal "undifferentiated", proliferating phenotype toward acquisition of a neural fate, is inhibited by the mitogenic signal.


Asunto(s)
Proteínas de Filamentos Intermediarios/genética , Células Madre Mesenquimatosas/citología , Mitógenos/farmacología , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Trombina/farmacología , Animales , Proteínas Sanguíneas/farmacología , Células de la Médula Ósea/citología , Recuento de Células , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Células Cultivadas , Expresión Génica/efectos de los fármacos , Proteínas de Filamentos Intermediarios/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Fenotipo , Ratas
19.
J Biol Chem ; 281(43): 32148-55, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16926154

RESUMEN

Intracellular accumulation of insoluble alpha-synuclein in Lewy bodies is a key neuropathological trait of Parkinson disease (PD). Neither the normal function of alpha-synuclein nor the biochemical mechanisms that cause its deposition are understood, although both are likely influenced by the interaction of alpha-synuclein with vesicular membranes, either for a physiological role in vesicular trafficking or as a pathological seeding mechanism that exacerbates the propensity of alpha-synuclein to self-assemble into fibrils. In addition to the alpha-helical form that is peripherally-attached to vesicles, a substantial portion of alpha-synuclein is freely diffusible in the cytoplasm. The mechanisms controlling alpha-synuclein exchange between these compartments are unknown and the possibility that chronic dysregulation of membrane-bound and soluble alpha-synuclein pools may contribute to Lewy body pathology led us to search for cellular factors that can regulate alpha-synuclein membrane interactions. Here we reveal that dissociation of membrane-bound alpha-synuclein is dependent on brain-specific cytosolic proteins and insensitive to calcium or metabolic energy. Two PD-linked mutations (A30P and A53T) significantly increase the cytosol-dependent alpha-synuclein off-rate but have no effect on cytosol-independent dissociation. These results reveal a novel mechanism by which cytosolic brain proteins modulate alpha-synuclein interactions with intracellular membranes. Importantly, our finding that alpha-synuclein dissociation is up-regulated by both familial PD mutations implicates cytosolic cofactors in disease pathogenesis and as molecular targets to influence alpha-synuclein aggregation.


Asunto(s)
Citosol/química , Proteínas/metabolismo , Membranas Sinápticas/metabolismo , Sinaptosomas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Química Encefálica , Regulación de la Expresión Génica , Cinética , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas/química , Proteínas/genética , Temperatura , Regulación hacia Arriba , alfa-Sinucleína/análisis , alfa-Sinucleína/genética
20.
Brain Res Bull ; 68(1-2): 95-102, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16325009

RESUMEN

Classically, bone marrow mesenchymal stem cells (MSC) differentiate in vivo or in vitro into osteocytes, chondrocytes, fibroblasts and adipocytes. Recently, it was reported by several groups that MSC can also adopt a neural fate in appropriate in vivo or in vitro experimental conditions. However, it is unclear if those cells are really able to differentiate into functional neural cells and in particular into functional neurons. Some observations suggest that a cell fusion process underlies the neural fate adoption by MSC in vivo and first attempts to reproduce in vitro this neural fate decision in MSC cultures were unsuccessful. More recently, however, in several laboratories including ours, differentiation of MSC cultivated from adult rat bone marrow into astrocytes and neuron-like cells was demonstrated. More precisely, we stressed the importance of the expression by MSC of nestin, an intermediate filament protein associated with immaturity in the nervous system, as a pre-requisite to adopting an astrocytic or a neuronal fate in a co-culture paradigm. Using this approach, we have also demonstrated that the MSC-derived neuron-like cells exhibit several electrophysiological key properties classically devoted to neurons, including firing of action potentials. In this review, we will discuss the neurogenic potential of MSC, the factor(s) required for such plasticity, the molecular mechanism(s) underlying this neural plasticity, the importance of the environment of MSC to adopt this neural fate and the therapeutic potential of these observations.


Asunto(s)
Astrocitos/citología , Proteínas de Filamentos Intermediarios/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Células Madre/citología , Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Mesodermo/citología , Nestina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA