Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 14(12): 6301-6316, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420305

RESUMEN

A common processing approach for optical coherence tomography (OCT) uses a window function (e.g., Hann or rectangular window) for spectral shaping prior to calculating the Fourier transform. Here we build on a multi-window approach [Opt. Express8, 5267 (2017)10.1364/BOE.8.005267] that enables improved resolution while still suppressing side-lobe intensity. The shape of the window function defines the trade-off between main-lobe width (resolution) and side-lobe intensity. We have extended the approach to include the interferometric phase for phase-sensitive applications like vibrometry and Doppler OCT. Using the Hann window as a reference, we show that 11 Taylor windows are sufficient to achieve 50% improvement in axial resolution, -31 dB side-lobe intensity, and 20% improvement in phase sensitivity with low computational cost.

2.
Biomed Opt Express ; 14(12): 6579-6591, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420318

RESUMEN

Increased imaging range is of growing interest in many applications of optical coherence tomography to reduce constraints on sample location, size, and topography. The design of optical coherence tomography systems with sufficient imaging range (e.g., 10s of centimeters) is a significant challenge due to the direct link between imaging range and acquisition bandwidth. We have developed a novel and flexible method to extend the imaging range in optical coherence tomography using electronic frequency shifting, enabling imaging in dynamic environments. In our approach, a laser with a quasi-linear sweep is used to limit the interferometric bandwidth, enabling decoupling of imaging range and acquisition bandwidth, while a tunable lens allows dynamic refocusing in the sample arm. Electronic frequency shifting then removes the need for high frequency digitization. This strategy is demonstrated to achieve high contrast morphological imaging over a > 21 cm working distance range, while maintaining high resolution and phase sensitivity. The system design is flexible to the application while requiring only a simple phase correction in post-processing. By implementing this approach in an auto-focusing paradigm, the proposed method demonstrates strong potential for the translation of optical coherence tomography into emerging applications requiring variable and centimeter-scale imaging ranges.

3.
J Biomed Opt ; 23(5): 1-12, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29777581

RESUMEN

Traumatic injury resulting in hemorrhage is a prevalent cause of death worldwide. The current standard of care for trauma patients is to restore hemostasis by controlling bleeding and administering intravenous volume resuscitation. Adequate resuscitation to restore tissue blood flow and oxygenation is critical within the first hours following admission to assess severity and avoid complications. However, current clinical methods for guiding resuscitation are not sensitive or specific enough to adequately understand the patient condition. To better address the shortcomings of the current methods, an approach to monitor intestinal perfusion and oxygenation using a multiwavelength (470, 560, and 630 nm) optical sensor has been developed based on photoplethysmography and reflectance spectroscopy. Specifically, two sensors were developed using three wavelengths to measure relative changes in the small intestine. Using vessel occlusion, systemic changes in oxygenation input, and induction of hemorrhagic shock, the capabilities and sensitivity of the sensor were explored in vivo. Pulsatile and nonpulsatile components of the red, blue, and green wavelength signals were analyzed for all three protocols (occlusion, systemic oxygenation changes, and shock) and were shown to differentiate perfusion and oxygenation changes in the jejunum. The blue and green signals produced better correlation to perfusion changes during occlusion and shock, while the red and blue signals, using a new correlation algorithm, produced better data for assessing changes in oxygenation induced both systemically and locally during shock. The conventional modulation ratio method was found to be an ineffective measure of oxygenation in the intestine due to noise and an algorithm was developed based on the Pearson correlation coefficient. The method utilized the difference in phase between two different wavelength signals to assess oxygen content. A combination of measures from the three wavelengths provided verification of oxygenation and perfusion states, and showed promise for the development of a clinical monitor.


Asunto(s)
Yeyuno , Monitoreo Fisiológico/instrumentación , Oximetría/instrumentación , Oxígeno/sangre , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Presión Sanguínea/fisiología , Diseño de Equipo , Yeyuno/irrigación sanguínea , Yeyuno/fisiología , Yeyuno/cirugía , Oximetría/métodos , Fotopletismografía/instrumentación , Conejos , Flujo Sanguíneo Regional/fisiología , Choque Hemorrágico/sangre , Choque Hemorrágico/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA