Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(28): 13471-13482, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38938080

RESUMEN

Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed regeneration of the more mobile singlet species via triplet fusion. This combined transport mechanism could be exploited for devices, but the interplay between singlet fission and triplet fusion, as well as the role of trap states is not yet well understood. Here, we study the spatiotemporal exciton dynamics in the singlet fission material tetracene by means of time resolved photoluminescence micro-spectroscopy on crystalline samples of different quality. Varying the temperature allows us to modify the dynamic equilibrium between singlet, triplet and trapped excitons. Supported by a kinetic model, we find that thermally activated dissociation of triplet pairs into free triplet excitons can account for an increase of the diffusion length below room temperature. Moreover, we demonstrate that trapping competes efficiently with exciton migration.

2.
ACS Appl Mater Interfaces ; 16(1): 1911-1920, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38154080

RESUMEN

The intriguing photophysical properties of monolayer stacks of different transition-metal dichalcogenides (TMDs), revealing rich exciton physics including interfacial and moiré excitons, have recently prompted an extension of similar investigations to hybrid systems of TMDs and organic films, as the latter combine large photoabsorption cross sections with the ability to tailor energy levels by targeted synthesis. To go beyond single-molecule photoexcitations and exploit the excitonic signatures of organic solids, crystalline molecular films are required. Moreover, a defined registry on the substrate, ideally an epitaxy, is desirable to also achieve an excitonic coupling in momentum space. This poses a certain challenge as excitonic dipole moments of organic films are closely related to the molecular orientation and film structure, which critically depend on the support roughness. Using X-ray diffraction, optical polarization, and atomic force microscopy, we analyzed the structure of pentacene (PEN) multilayer films grown on WSe2(001) and WS2(001) and identified an epitaxial alignment. While (022)-oriented PEN films are formed on both substrates, their azimuthal orientations are quite different, showing an alignment of the molecular L-axis along the ⟨110⟩WSe2 and ⟨100⟩WS2 directions. This intrinsic epitaxial PEN growth depends, however, sensitively on the substrates surface quality. While it occurs on exfoliated TMD single crystals and multilayer flakes, it is hardly found on exfoliated monolayers, which often exhibit bubbles and wrinkles. This enhances the surface roughness and results in (001)-oriented PEN films with upright molecular orientation but without any azimuthal alignment. However, monolayer flakes can be smoothed by AFM operated in contact mode or by transferring to ultrasmooth substrates such as hBN, which again yields epitaxial PEN films. As different PEN orientations result in different characteristic film morphologies (elongated mesa islands vs pyramidal dendrites), which can be easily distinguished by AFM or optical microscopy, this provides a simple means to judge the roughness of the used TMD surface.

3.
J Chem Theory Comput ; 19(24): 9369-9387, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38073092

RESUMEN

The photophysics of organic semiconductor (OSC) thin films or crystals has garnered significant attention in recent years since a comprehensive theoretical understanding of the various processes occurring upon photoexcitation is crucial for assessing the efficiency of OSC materials. To date, research in this area has relied on methods using Frenkel-Holstein Hamiltonians, calculations of the GW-Bethe-Salpeter equation with periodic boundaries, or cluster-based approaches using quantum chemical methods, with each of the three approaches having distinct advantages and disadvantages. In this work, we introduce an optimally tuned, range-separated time-dependent density functional theory approach to accurately reproduce the total and polarization-resolved absorption spectra of pentacene, tetracene, and perylene thin films, all representative OSC materials. Our approach achieves excellent agreement with experimental data (mostly ≤0.1 eV) when combined with the utilization of clusters comprising multiple monomers and a standard polarizable continuum model to simulate the thin-film environment. Our protocol therefore addresses a major drawback of cluster-based approaches and makes them attractive tools for OSC investigations. Its key advantages include its independence from external, system-specific fitting parameters and its straightforward application with well-known quantum chemical program codes. It demonstrates how chemical intuition can help to reduce computational cost and still arrive at chemically meaningful and almost quantitative results.

4.
Nat Commun ; 14(1): 1554, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944658

RESUMEN

Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.

5.
J Phys Chem Lett ; 14(10): 2551-2557, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36877682

RESUMEN

Halogenation of organic molecules causes chemical shifts of C1s core-level binding energies that are commonly used as fingerprints to identify chemical species. Here, we use synchrotron-based X-ray photoelectron spectroscopy and density functional theory calculations to unravel such chemical shifts by examining different partially fluorinated pentacene derivatives. Core-level shifts occur even for carbon atoms distant from the fluorination positions, yielding a continuous shift of about 1.8 eV with increasing degree of fluorination for pentacenes. Since also their LUMO energies shift markedly with the degree of fluorination of the acenes, core-level shifts result in a nearly constant excitation energy of the leading π* resonance as obtained in complementary recorded K-edge X-ray absorption spectra, hence demonstrating that local fluorination affects the entire π-system, including valence and core levels. Our results thus challenge the common picture of characteristic chemical core-level energies as fingerprint signatures of fluorinated π-conjugated molecules.

6.
ACS Appl Mater Interfaces ; 14(40): 46086-46094, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36191090

RESUMEN

Organic semiconductors combine flexible tailoring of their optoelectronic properties by synthetic means with strong light-matter coupling, which is advantageous for organic electronic device applications. Although spatially selective deposition has been demonstrated, lateral patterning of organic films with simultaneous control of molecular and crystalline orientation is lacking as traditional lithography is not applicable. Here, a new patterning approach based on surface-localized F-centers (halide vacancies) generated by electron irradiation of alkali halides is presented, which allows structural control of molecular adlayers. Combining optical and atomic force microscopy, X-ray diffraction, and density functional theory (DFT) calculations, it is shown that dinaphthothienothiophene (DNTT) molecules adopt an upright orientation on pristine KCl surfaces, while the F-centers stabilize a recumbent orientation, and that these orientations are maintained in thicker films. This specific nucleation results also in different crystallographic morphologies, namely, densely packed islands and jagged fibers, each epitaxially aligned on the KCl surface. Spatially selective surface irradiation can also be used to create patterns of F-centers and thus laterally patterned DNTT films, which can be further transferred to any (including elastomer) substrate due to the water solubility of the alkali halide growth templates.

7.
Langmuir ; 38(30): 9266-9277, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35858043

RESUMEN

Controlling the polymorph formation in organic semiconductor thin films by the choice of processing parameters is a key factor for targeted device performance. Small molecular semiconductors such as the prototypical anilino squaraine compound with branched butyl chains as terminal functionalization (SQIB) allow both solution and vapor phase deposition methods. SQIB has been considered for various photovoltaic applications mainly as amorphous isotropic thin films due to its broad absorption within the visible to deep-red spectral range. The two known crystalline polymorphs adopting a monoclinic and orthorhombic crystal phase show characteristic Frenkel excitonic spectral signatures of overall H-type and J-type aggregates, respectively, with additional pronounced Davydov splitting. This gives a recognizable polarized optical response of crystalline thin films suitable for identification of the polymorphs. Both phases emerge with a strongly preferred out-of-plane and rather random in-plane orientation in spin-casted thin films depending on subsequent thermal annealing. By contrast, upon vapor deposition on dielectric and conductive substrates, such as silicon dioxide, potassium chloride, graphene, and gold, the polymorph expression depends basically on the choice of growth substrate. The same pronounced out-of-plane orientation is adopted in all crystalline cases, but with a surface templated in-plane alignment in case of crystalline substrates. Strikingly, the amorphous isotropic thin films obtained by vapor deposition cannot be crystallized by thermal postannealing, which is a key feature for the spin-casted thin films, here monitored by polarized in situ microscopy. Combining X-ray diffraction, atomic force microscopy, ellipsometry, and polarized spectro-microscopy, we identify the processing-dependent evolution of the crystal phases, correlating morphology and molecular orientations within the textured SQIB films.

8.
Angew Chem Int Ed Engl ; 61(40): e202207175, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35876840

RESUMEN

2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand. To escape the host innate immune recognition, some viruses encode poxin endonucleases that cleave 2',3'-cGAMP. Here we report that dideoxy-2',3'-cGAMP (1) and analogs thereof, which lack the secondary ribose-OH groups, form a group of poxin-stable STING agonists. Despite their reduced affinity to STING, particularly the compound constructed from two A nucleosides, dideoxy-2',3'-cAAMP (2), features an unusually high antitumor response in mice.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana/genética , Nucleósidos , Animales , Antivirales , Citocinas , ADN , Endonucleasas , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos , Nucleotidiltransferasas/metabolismo , Ribosa
9.
Chembiochem ; 23(8): e202200005, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35189023

RESUMEN

The cGAS-STING pathway is known for its role in sensing cytosolic DNA introduced by a viral infection, bacterial invasion or tumorigenesis. Free DNA is recognized by the cyclic GMP-AMP synthase (cGAS) catalyzing the production of 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in mammals. This cyclic dinucleotide acts as a second messenger, activating the stimulator of interferon genes (STING) that finally triggers the transcription of interferon genes and inflammatory cytokines. Due to the therapeutic potential of this pathway, both the production and the detection of cGAMP via fluorescent moieties for assay development is of great importance. Here, we introduce the paralleled synthetic access to the intrinsically fluorescent, cyclic dinucleotides 2'3'-cth GAMP and 3'3'-cth GAMP based on phosphoramidite and phosphate chemistry, adaptable for large scale synthesis. We examine their binding properties to murine and human STING and confirm biological activity including interferon induction by 2'3'-cth GAMP in THP-1 monocytes. Two-photon imaging revealed successful cellular uptake of 2'3'-cth GAMP in THP-1 cells.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Animales , ADN/metabolismo , Fosfatos de Dinucleósidos , Humanos , Interferones , Mamíferos/genética , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Sistemas de Mensajero Secundario
10.
Chemistry ; 28(7): e202103653, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874080

RESUMEN

Optoelectronic properties of molecular solids are important for organic electronic devices and are largely determined by the adopted molecular packing motifs. In this study, we analyzed such structure-property relationships for the partially regioselective fluorinated tetracenes 1,2,12-trifluorotetracene, 1,2,10,12-tetrafluorotetracene and 1,2,9,10,11-pentafluorotetracene that were further compared with tetracene and perfluoro-tetracene. Quantum chemical DFT calculations in combination with optical absorption spectroscopy data show that the frontier orbital energies are lowered with the degree of fluorination, while their optical gap is barely affected. However, the crystal structure changes from a herringbone packing motif of tetracene towards a planar stacking motif of the fluorinated tetracene derivatives, which is accompanied by the formation of excimers and leads to strongly red-shifted photoluminescence with larger lifetimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA