Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(36): 40850-40858, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32805846

RESUMEN

Electric double layer (EDL) gating using a single-ion conductor is compared to a dual-ion conductor using both finite element modeling and Hall-effect measurements. Modified Nernst-Planck Poisson (mNPP) equations are used to calculate the ion density per unit area in a parallel plate capacitor geometry with a bulk ion concentration of 215 ≤ cbulk ≤ 1782 mol/m3. With electrodes of equal size at a 2 V potential difference, the EDL ion density of the single-ion conductor is ∼7 × 1013 ions/cm2, which is approximately 50% of the ion density induced in the dual-ion conductor. However, this difference is reduced to 8% when the electrode at which the cationic EDL forms is 10 times smaller than the counter electrode. Thus, for a field-effect transistor gated by a single-ion conductor, it is especially important to have a large gate-to-channel size ratio to achieve strong ion doping. The modeled ion densities are validated by Hall-effect measurements on graphene Hall bars gated by a polyethylene oxide (PEO)-based single-ion conductor. The sheet carrier density, nS, is ∼2 × 1013 cm-2 at Vg = 2 V, which is 3.5 times smaller than the predicted value and has the same order of magnitude as the ns measured for a PEO-based, dual-ion conductor on the same graphene. The numerical modeling results can be approximated by a simple analysis of capacitors in series, where the EDLs are modeled as capacitors with thickness estimated by the sum of the Debye screening length and the Stern layer. The series of capacitor estimate agrees with the numerical modeling of the dual-ion conductor to within 10% and the single-ion conductor to within 30% from 0.25 to 2 V (cbulk = 925 mol/m3); similar agreement is observed in the concentration range of 353-1650 mol/m3 for both single- and dual-ion conductors.

2.
ACS Appl Mater Interfaces ; 11(39): 35879-35887, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31486629

RESUMEN

Electric double-layer (EDL) gating using a custom-synthesized polyester single-ion conductor (PE400-Li) is demonstrated on two-dimensional (2D) crystals for the first time. The electronic properties of graphene and MoTe2 field-effect transistors (FETs) gated with the single-ion conductor are directly compared to a poly(ethylene oxide) dual-ion conductor (PEO:CsClO4). The anions in the single-ion conductor are covalently bound to the backbone of the polymer, leaving only the cations free to form an EDL at the negative electrode and a corresponding cationic depletion layer at the positive electrode. Because the cations are mobile in both the single- and dual-ion conductors, a similar enhancement of the n-branch is observed in both graphene and MoTe2. Specifically, the single-ion conductor decreases the subthreshold swing in the n-branch of the bare MoTe2 FET from 5000 to 250 mV/dec and increases the current density and on/off ratio by two orders of magnitude. However, the single-ion conductor suppressed the p-branch in both the graphene and the MoTe2 FETs, and finite element modeling of ion transport shows that this result is unique to single-ion conductor gating in combination with an asymmetric gate/channel geometry. Both the experiments and modeling suggest that single-ion conductor-gated FETs can achieve sheet densities up to 1014 cm-2, which corresponds to a charge density that would theoretically be sufficient to induce several percent strain in monolayer 2D crystals and potentially induce a semiconductor-to-metal phase transition in MoTe2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...