Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 36(14): 2002-2013, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-27869164

RESUMEN

Overexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis.


Asunto(s)
Daño del ADN/fisiología , Genes p53/fisiología , Proteínas Mutantes/fisiología , Espermatogonias/patología , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Apoptosis/genética , Arginina/genética , Embrión de Mamíferos , Histidina/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mutantes/genética , Tasa de Mutación , Espermatogonias/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Testículo/metabolismo , Testículo/patología
2.
Gene ; 345(2): 183-90, 2005 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-15716121

RESUMEN

Extracellular regulated kinase 5 (ERK5) is an unusually large member of the MAP kinase family of signaling molecules that plays an important role in cellular proliferation, differentiation and survival. Recently, three transcriptional variants of murine Erk5 were described (mErk5-a, -b and -c) that result from alternate splicing across introns 1 and/or 2, the net effect of which is translation of a peptide that lacks the kinase domain. It has been demonstrated that expression of mErk5-b and -c impinge on the function of the full length mErk5 protein product via a dominant negative effect. Here, we report the identification of another murine Erk5 splice variant and the orthologous human transcript that arise due to alternate splicing of intron 4. Failure to splice out intron 4 introduces a premature in-frame stop codon that directs translation of a peptide lacking the nuclear localization signal (NLS) and proline-rich region (PR). Experimental characterization demonstrated that like mERK5, mERK5-T becomes phosphorylated by co-expression with a constitutively active mMEK5 (mMEK5DD), and is able to coimmunoprecipitate with both itself and mERK5. Unlike mERK5, however, activated ERK5-T is unable to translocate from the cytoplasm to the nucleus in HeLaS3 cells, causing the retention of active mERK5 in the cytoplasm. Taken together with previous reports of domain content modification of ERK5 via alternate splicing, these observations add to the suggestion that regulation of ERK5 signaling may be mediated, at least in part, at the level of RNA processing.


Asunto(s)
Empalme Alternativo , Proteína Quinasa 7 Activada por Mitógenos/genética , Animales , Línea Celular Transformada , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dimerización , Humanos , Ratones , Datos de Secuencia Molecular , ARN Mensajero/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA