Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 735: 139401, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32464410

RESUMEN

Manure from poultry operations is typically applied to nearby cropland and may affect nutrient loading and the spread of antibiotic resistance (ABR). We analyzed the concentrations of nitrogen and phosphorus and the occurrence of ABR in Escherichia coli (E. coli) and extra-intestinal pathogenic E. coli isolates from streams draining 15 small (<19 km2) watersheds of the Chesapeake Bay with contrasting levels of concentrated poultry operations. Total nitrogen and nitrate plus nitrite concentrations increased with poultry barn density with concentrations two and three times higher, respectively, in watersheds with the highest poultry barn densities compared to those without poultry barns. Analysis of N and O isotopes in nitrate by mass spectrometry showed an increase in the proportion of 15N associated with an increase in barn density, suggesting that the nitrate associated with poultry barns originated from manure. Phosphorus concentrations were not correlated with barn density. Antibiotic susceptibility testing of putative E. coli isolates was conducted using the disk diffusion method for twelve clinically important antibiotics. Of the isolates tested, most were completely susceptible (67%); 33% were resistant to at least one antibiotic, 24% were resistant to ampicillin, 13% were resistant to cefazolin, and 8% were multi-drug resistant. Resistance to three cephalosporin drugs was positively associated with an index of manure exposure estimated from poultry barn density and proportion of cropland in a watershed. The proportion of E. coli isolates resistant to cefoxitin, cefazolin, and ceftriaxone, broad-spectrum antibiotics important in human medicine, increased by 18.9%, 16.9%, and 6.2%, respectively, at the highest estimated level of manure exposure compared to watersheds without manure exposure. Our results suggest that comparisons of small watersheds could be used to identify geographic areas where remedial actions may be needed to reduce nutrient pollution and the public health risks of ABR bacteria.


Asunto(s)
Estiércol , Aves de Corral , Animales , Antibacterianos , Bahías , Productos Agrícolas , Escherichia coli , Humanos , Nutrientes
2.
Vet Res ; 49(1): 64, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060757

RESUMEN

Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential.


Asunto(s)
Ganado/inmunología , Vacunas/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Estados Unidos
3.
Vet Res ; 49(1): 70, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060759

RESUMEN

Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public-private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.


Asunto(s)
Ganado/inmunología , Vacunas/uso terapéutico , Crianza de Animales Domésticos , Animales , Antibacterianos/uso terapéutico , Estados Unidos , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...