Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 5552, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692389

RESUMEN

Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Depresión Sináptica a Largo Plazo , Células Piramidales/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptor gamma X Retinoide/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Ratones , Ratones Noqueados , Receptores de Glutamato Metabotrópico/genética , Receptor gamma X Retinoide/genética , Sinapsis/genética
2.
Proc Natl Acad Sci U S A ; 113(12): 3347-52, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951658

RESUMEN

Elevated levels of the ß-amyloid peptide (Aß) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer's disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aß exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aß-induced impairments. Neither transgene affected Aß production or the electrophysiological response to low concentrations of Aß, suggesting that these manipulations selectively affect the pathological response to elevated Aß levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aß levels in AD patients.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Trastornos del Conocimiento/fisiopatología , Proteína Fosfatasa 2/metabolismo , Animales , Conducta Animal , Metilación , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...