Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anesthesiology ; 140(4): 715-728, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147628

RESUMEN

BACKGROUND: Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics. The authors tested whether NDi1 would reduce the hyperpolarization caused by isoflurane in neurons from Ndufs4 and wild-type mice. Since volatile anesthetic behavioral hypersensitivity in Ndufs4 is transduced uniquely by glutamatergic neurons, it was also tested whether these currents were also unique to glutamatergic neurons in the Ndufs4 spinal cord. METHODS: Spinal cord neurons from wild-type, NDi1, and Ndufs4 mice were patch clamped to characterize isoflurane sensitive currents. Neuron types were marked using fluorescent markers for cholinergic, glutamatergic, and γ-aminobutyric acid-mediated (GABAergic) neurons. Norfluoxetine was used to identify potassium channel type. Neuron type-specific Ndufs4 knockout animals were generated using type-specific Cre-recombinase with floxed Ndufs4. RESULTS: Resting membrane potentials (RMPs) of neurons from NDi1;Ndufs4, unlike those from Ndufs4, were not hyperpolarized by 0.6% isoflurane (Ndufs4, ΔRMP -8.2 mV [-10 to -6.6]; P = 1.3e-07; Ndi1;Ndufs4, ΔRMP -2.1 mV [-7.6 to +1.4]; P = 1). Neurons from NDi1 animals in a wild-type background were not hyperpolarized by 1.8% isoflurane (wild-type, ΔRMP, -5.2 mV [-7.3 to -3.2]; P = 0.00057; Ndi1, ΔRMP, 0.6 mV [-1.7 to 3.2]; P = 0.68). In spinal cord slices from global Ndufs4 animals, holding currents (HC) were induced by 0.6% isoflurane in both GABAergic (ΔHC, 81.3 pA [61.7 to 101.4]; P = 2.6e-05) and glutamatergic (ΔHC, 101.2 pA [63.0 to 146.2]; P = 0.0076) neurons. In neuron type-specific Ndufs4 knockouts, HCs were increased in cholinergic (ΔHC, 119.5 pA [82.3 to 156.7]; P = 0.00019) and trended toward increase in glutamatergic (ΔHC, 85.5 pA [49 to 126.9]; P = 0.064) neurons but not in GABAergic neurons. CONCLUSIONS: Bypassing complex I by overexpression of NDi1 eliminates increases in potassium currents induced by isoflurane in the spinal cord. The isoflurane-induced potassium currents in glutamatergic neurons represent a potential downstream mechanism of complex I inhibition in determining minimum alveolar concentration.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Ratones , Animales , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Canales de Potasio , Médula Espinal , Ratones Transgénicos , Interneuronas , Complejo I de Transporte de Electrón/genética , Colinérgicos
2.
Anesthesiology ; 139(1): 63-76, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027798

RESUMEN

BACKGROUND: A variety of molecular targets for volatile anesthetics have been suggested, including the anesthetic-sensitive potassium leak channel, TREK-1. Knockout of TREK-1 is reported to render mice resistant to volatile anesthetics, making TREK-1 channels compelling targets for anesthetic action. Spinal cord slices from mice, either wild type or an anesthetic- hypersensitive mutant, Ndufs4, display an isoflurane-induced outward potassium leak that correlates with their minimum alveolar concentrations and is blocked by norfluoxetine. The hypothesis was that TREK-1 channels conveyed this current and contribute to the anesthetic hypersensitivity of Ndufs4. The results led to evaluation of a second TREK channel, TREK-2, in control of anesthetic sensitivity. METHODS: The anesthetic sensitivities of mice carrying knockout alleles of Trek-1 and Trek-2, the double knockout Trek-1;Trek-2, and Ndufs4;Trek-1 were measured. Neurons from spinal cord slices from each mutant were patch clamped to characterize isoflurane-sensitive currents. Norfluoxetine was used to identify TREK-dependent currents. RESULTS: The mean values for minimum alveolar concentrations (± SD) between wild type and two Trek-1 knockout alleles in mice (P values, Trek-1 compared to wild type) were compared. For wild type, minimum alveolar concentration of halothane was 1.30% (0.10), and minimum alveolar concentration of isoflurane was 1.40% (0.11); for Trek-1tm1Lex, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.387), and minimum alveolar concentration of isoflurane was 1.38% (0.09; P = 0.268); and for Trek-1tm1Lzd, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.482), and minimum alveolar concentration of isoflurane was 1.41% (0.12; P = 0.188). Neither allele was resistant for loss of righting reflex. The EC50 values of Ndufs4;Trek-1tm1Lex did not differ from Ndufs4 (for Ndufs4, EC50 of halothane, 0.65% [0.05]; EC50 of isoflurane, 0.63% [0.05]; and for Ndufs4;Trek-1tm1Lex, EC50 of halothane, 0.58% [0.07; P = 0.004]; and EC50 of isoflurane, 0.61% [0.06; P = 0.442]). Loss of TREK-2 did not alter anesthetic sensitivity in a wild-type or Trek-1 genetic background. Loss of TREK-1, TREK-2, or both did not alter the isoflurane-induced currents in wild-type cells but did cause them to be norfluoxetine insensitive. CONCLUSIONS: Loss of TREK channels did not alter anesthetic sensitivity in mice, nor did it eliminate isoflurane-induced transmembrane currents. However, the isoflurane-induced currents are norfluoxetine-resistant in Trek mutants, indicating that other channels may function in this role when TREK channels are deleted.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Canales de Potasio de Dominio Poro en Tándem , Animales , Ratones , Isoflurano/farmacología , Halotano/farmacología , Anestésicos por Inhalación/farmacología , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem/genética , Complejo I de Transporte de Electrón/genética
3.
Curr Biol ; 32(14): 3016-3032.e3, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35688155

RESUMEN

The mechanisms of volatile anesthetic action remain among the most perplexing mysteries of medicine. Across phylogeny, volatile anesthetics selectively inhibit mitochondrial complex I, and they also depress presynaptic excitatory signaling. To explore how these effects are linked, we studied isoflurane effects on presynaptic vesicle cycling and ATP levels in hippocampal cultured neurons from wild-type and complex I mutant (Ndufs4(KO)) mice. To bypass complex I, we measured isoflurane effects on anesthetic sensitivity in mice expressing NADH dehydrogenase (NDi1). Endocytosis in physiologic concentrations of glucose was delayed by effective behavioral concentrations of isoflurane in both wild-type (τ [unexposed] 44.8 ± 24.2 s; τ [exposed] 116.1 ± 28.1 s; p < 0.01) and Ndufs4(KO) cultures (τ [unexposed] 67.6 ± 16.0 s; τ [exposed] 128.4 ± 42.9 s; p = 0.028). Increasing glucose, to enhance glycolysis and increase ATP production, led to maintenance of both ATP levels and endocytosis (τ [unexposed] 28.0 ± 14.4; τ [exposed] 38.2 ± 5.7; reducing glucose worsened ATP levels and depressed endocytosis (τ [unexposed] 85.4 ± 69.3; τ [exposed] > 1,000; p < 0.001). The block in recycling occurred at the level of reuptake of synaptic vesicles into the presynaptic cell. Expression of NDi1 in wild-type mice caused behavioral resistance to isoflurane for tail clamp response (EC50 Ndi1(-) 1.27% ± 0.14%; Ndi1(+) 1.55% ± 0.13%) and halothane (EC50 Ndi1(-) 1.20% ± 0.11%; Ndi1(+) 1.46% ± 0.10%); expression of NDi1 in neurons improved hippocampal function, alleviated inhibition of presynaptic recycling, and increased ATP levels during isoflurane exposure. The clear alignment of cell culture data to in vivo phenotypes of both isoflurane-sensitive and -resistant mice indicates that inhibition of mitochondrial complex I is a primary mechanism of action of volatile anesthetics.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Adenosina Trifosfato , Anestésicos por Inhalación/farmacología , Animales , Complejo I de Transporte de Electrón/genética , Endocitosis , Glucosa , Isoflurano/farmacología , Ratones
4.
Anesthesiology ; 134(6): 901-914, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33909880

RESUMEN

BACKGROUND: Ndufs4 knockout (KO) mice are defective in mitochondrial complex I function and hypersensitive to inhibition of spinal cord-mediated response to noxious stimuli by volatile anesthetics. It was hypothesized that, compared to wild-type, synaptic or intrinsic neuronal function is hypersensitive to isoflurane in spinal cord slices from knockout mice. METHODS: Neurons from slices of the vestibular nucleus, central medial thalamus, and spinal cord from wild-type and the global Ndufs4 knockout were patch clamped. Unstimulated synaptic and intrinsic neuronal characteristics were measured in response to isoflurane. Norfluoxetine was used to block TREK channel conductance. Cholinergic cells were labeled with tdTomato. RESULTS: All values are reported as means and 95% CIs. Spontaneous synaptic activities were not different between the mutant and control. Isoflurane (0.6%; 0.25 mM; Ndufs4[KO] EC95) increased the holding current in knockout (ΔHolding current, 126 pA [95% CI, 99 to 152 pA]; ΔHolding current P < 0.001; n = 21) but not wild-type (ΔHolding current, 2 7 pA [95% CI, 9 to 47 pA]; ΔHolding current, P = 0.030; n = 25) spinal cord slices. Knockout and wild-type ΔHolding currents were significantly different (P < 0.001). Changes comparable to those in the knockout were seen in the wild type only in 1.8% (0.74 mM) isoflurane (ΔHolding current, 72 pA [95% CI, 43 to 97 pA]; ΔHolding current, P < 0.001; n = 13), the control EC95. Blockade of action potentials indicated that the increased holding current in the knockout was not dependent on synaptic input (ΔHolding current, 154 pA [95% CI, 99 to 232 pA]; ΔHolding current, P = 0.506 compared to knockout without blockade; n = 6). Noncholinergic neurons mediated the increase in holding current sensitivity in Ndufs4 knockout. The increased currents were blocked by norfluoxetine. CONCLUSIONS: Isoflurane increased an outwardly rectifying potassium current in ventral horn neurons of the Ndufs4(KO) mouse at a concentration much lower than in controls. Noncholinergic neurons in the spinal cord ventral horn mediated the effect. Presynaptic functions in Ndufs4(KO) slices were not hypersensitive to isoflurane. These data link anesthetic sensitivity, mitochondrial function, and postsynaptic channel activity.


Asunto(s)
Anestésicos , Isoflurano , Anestésicos/farmacología , Animales , Complejo I de Transporte de Electrón , Isoflurano/farmacología , Ratones , Ratones Noqueados , Mitocondrias , Médula Espinal
5.
Curr Biol ; 26(16): 2194-201, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27498564

RESUMEN

An enigma of modern medicine has persisted for over 150 years. The mechanisms by which volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, and immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to produce a significant effect when genetically tested in whole-animal models [1-3]. However, mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4-6]. Ndufs4 knockout (KO) mice lack a subunit of mitochondrial complex I and are strikingly hypersensitive to VAs yet resistant to the intravenous anesthetic ketamine [7]. The change in VA sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 pyramidal neurons does not differ between Ndufs4(KO) and control mice. Isoflurane concentrations that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 pyramidal cells. Spontaneous inhibitory postsynaptic currents (sIPSCs) were not differentially affected between genotypes. The effects of isoflurane were similar on evoked field excitatory postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices. We propose that CA1 presynaptic excitatory neurotransmission is hypersensitive to isoflurane in Ndufs4(KO) mice due to the inhibition of pre-existing reduced complex I function, reaching a critical reduction that can no longer meet metabolic demands.


Asunto(s)
Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Mitocondrias/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Transmisión Sináptica , Animales , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Células Piramidales/fisiología
6.
Cancer Genet Cytogenet ; 141(2): 97-105, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12606126

RESUMEN

Previously, a high percentage of Wilms tumors was found to be hypomethylated in the unusually long region of pericentromeric satellite DNA on chromosome 1. We now show that these pediatric cancers are also frequently hypomethylated in centromeric satellite DNA throughout the genome and compare satellite DNA hypomethylation with chromosome rearrangements. Relative to normal somatic tissues, 83% of the tumors were hypomethylated in centromeric satellite alpha DNA. This was assessed by blot hybridization under low-stringency conditions after digestion with CpG methylation-sensitive restriction endonucleases. Similar results were obtained with different enzymes, indicating generalized hypomethylation of centromeric DNA. Hypomethylation of another heterochromatic sequence, juxtacentromeric satellite 2 DNA of chromosome 1, was observed in 51% of the tumors. By cytogenetic analysis, rearrangements in the centromeric or juxtacentromeric heterochromatin of chromosome 1 were the most frequent structural aberration and were seen in 14% of the tumors. Tumors with such rearrangements had hypomethylation of satellite DNA in the pericentromeric region. These results show a high degree of targeting of DNA hypomethylation to centromeric and juxtacentromeric satellite DNA sequences in cancer and are consistent with satellite DNA hypomethylation contributing to, but not sufficing for, karyotypic instability in cancer and possibly playing other roles in carcinogenesis.


Asunto(s)
Metilación de ADN , ADN Satélite/metabolismo , Neoplasias Renales/genética , Tumor de Wilms/genética , Centrómero/metabolismo , Niño , Preescolar , Aberraciones Cromosómicas , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 10 , Humanos , Lactante , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...