Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 205: 117677, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624586

RESUMEN

Previous laboratory scale studies indicate nanofiltration (NF) and UV-sulfite photochemical treatments as promising technologies for the removal and destruction, respectively, of per- and polyfluoroalkyl substances (PFASs) from contaminated water. This study reports on a field demonstration of a pilot-scale hybrid NF and UV-sulfite treatment train for the remediation of 12 PFASs detected in groundwater impacted by aqueous film-forming foam (AFFF) at a U.S. Department of Defense installation. For most of the detected PFASs, NF rejection was consistently ≥ 95% over a 30-day field trial when operating at 90% total permeate recovery. Rejection of short-chain perfluorosulfonic acids (PFSAs) by NF decreased when recoveries increased from 90 to 97%; tests with a reverse osmosis (RO) membrane showed ≥ 99% rejection of all PFASs regardless of increasing recovery. UV treatment of the NF reject following 90% permeate recovery resulted in variable destruction of individual PFASs, with rates also being dependent on pH and the identity and concentration of UV photosensitizer. Rates of perfluorocarboxylic acid (PFCA) degradation were greater than those measured for PFSAs and perfluoroalkyl acid (PFAA) precursors and were independent of perfluoroalkyl chain length. In contrast, rates of PFSA degradation increased with increasing chain length. Consistent levels of PFAS degradation by UV-sulfite were observed during a 30-day demonstration experiment in NF reject water amended with 10 mM sulfite and adjusted to pH 11.2. Collectively, > 75% of the detected PFAS mass in the NF reject was destroyed after 4 h of UV treatment, increasing to > 90% after 8 h of treatment. An analysis of electrical energy inputs for the hybrid NF/UV-sulfite treatment train showed energy per order magnitude (EE/O) requirements ranging from ≤ 13.1 kWh/m3 for PFCAs and 14.1 kWh/m3 for PFOS to values > 100 kWh/m3 for more recalcitrant short-chain PFSA analogues. The UV reactor and water-cooling system were the major contributors to overall energy requirements and represent the greatest opportunities for improving efficiency of the technology.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Sulfitos , Agua , Contaminantes Químicos del Agua/análisis
2.
Water Res ; 70: 27-37, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25506761

RESUMEN

Ultraviolet (UV) reactors used for disinfecting water and wastewater must be validated and monitored over time. The validation process requires understanding the photochemical properties of the pathogens of concern and the challenge microorganisms used to represent them. Specifically for polychromatic UV systems, the organisms' dose responses to UV light and their sensitivity across the UV spectrum must be known. This research measured the UV spectral sensitivity, called action spectra, of Cryptosporidium parvum, and MS2, T1UV, Q Beta, T7, and T7m Coliphages, as well as Bacillus pumilus spores. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths at 10 nm intervals between 210 and 290 nm. Above 240 nm, all bacteria and viruses tested exhibited a relative peak sensitivity between 260 and 270 nm. Of the coliphage, MS2 exhibited the highest relative sensitivity below 240 nm, relative to its sensitivity at 254 nm, followed by Q Beta, T1UV, T7m and T7 coliphage. B. pumilus spores were more sensitive to UV light at 220 nm than any of the coliphage. These spectra are required for calculating action spectra correction factors for medium pressure UV system validation, for matching appropriate challenge microorganisms to pathogens, and for improving UV dose monitoring. Additionally, understanding the dose response of these organisms at multiple wavelengths can improve polychromatic UV dose calculations and enable prediction of pathogen inactivation from wavelength-specific disinfection technologies such as UV light emitting diodes (LEDs).


Asunto(s)
Desinfección , Rayos Ultravioleta , Microbiología del Agua , Cryptosporidium parvum/efectos de la radiación , Presión
3.
Environ Sci Technol ; 48(1): 591-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24266597

RESUMEN

Adenovirus is regarded as the most resistant pathogen to ultraviolet (UV) disinfection due to its demonstrated resistance to monochromatic, low-pressure (LP) UV irradiation at 254 nm. This resistance has resulted in high UV dose requirements for all viruses in regulations set by the United States Environmental Protection Agency. Polychromatic, medium-pressure (MP) UV irradiation has been shown to be much more effective than 254 nm, although the mechanisms of polychromatic UV inactivation are not completely understood. This research analyzes the wavelength-specific effects of UV light on adenovirus type 2 by analyzing in parallel the reduction in viral infectivity and damage to the viral genome. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths. Cell culture infectivity and PCR were employed to quantify the adenoviral inactivation rates using narrow bands of irradiation (<1 nm) at 10 nm intervals between 210 and 290 nm. The inactivation rate corresponding to adenoviral genome damage matched the inactivation rate of adenovirus infectivity at 253.7 nm, 270 nm, 280 nm, and 290 nm, suggesting that damage to the viral DNA was primarily responsible for loss of infectivity at those wavelengths. At 260 nm, more damage to the nucleic acid was observed than reduction in viral infectivity. At 240 nm and below, the reduction of viral infectivity was significantly greater than the reduction of DNA amplification, suggesting that UV damage to a viral component other than DNA contributed to the loss of infectivity at those wavelengths. Inactivation rates were used to develop a detailed spectral sensitivity or action spectrum of adenovirus 2. This research has significant implications for the water treatment industry with regard to polychromatic inactivation of viruses and the development of novel wavelength-specific UV disinfection technologies.


Asunto(s)
Adenoviridae/efectos de la radiación , Daño del ADN , Desinfección/métodos , Rayos Ultravioleta , Purificación del Agua/métodos , Adenoviridae/genética , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Desinfección/instrumentación , Relación Dosis-Respuesta en la Radiación , Humanos , Reacción en Cadena de la Polimerasa , Presión , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...