Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Phytother Res ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152726

RESUMEN

Harmine (HM), a ß-carboline alkaloid extracted from plants, is a crucial component of traditional Chinese medicine (TCM) known for its diverse pharmacological activities. Thrombocytopenia, a common and challenging hematological disorder, often coexists with serious illnesses. Previous research has shown a correlation between HM and thrombocytopenia, but the mechanism needs further elucidation. The aim of this study was to clarify the mechanisms underlying the effects of HM on thrombocytopenia and to develop new therapeutic strategies. Flow cytometry, Giemsa staining, and Phalloidin staining were used to assess HM's impact on Meg-01 and HEL cell differentiation and maturation in vitro. A radiation-induced thrombocytopenic mouse model was employed to evaluate HM's effect on platelet production in vivo. Network pharmacology, molecular docking, and protein blotting were utilized to investigate HM's targets and mechanisms. The results demonstrated that HM dose-dependently promoted Meg-01 and HEL cell differentiation and maturation in vitro and restored platelet levels in irradiated mice in vivo. Subsequently, HM was found to be involved in the biological process of platelet production by upregulating the expressions of Rac1, Cdc42, JNK, and 5-HTR2A. Furthermore, the targeting of HM to 5-HTR2A and its correlation with downstream Rac1/Cdc42/JNK were also confirmed. In conclusion, HM regulates megakaryocyte differentiation and thrombopoiesis through the 5-HTR2A and Rac1/Cdc42/JNK pathways, providing a potential treatment strategy for thrombocytopenia.

2.
Oncol Res ; 32(7): 1197-1207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948022

RESUMEN

Breast cancer, a predominant global health issue, requires ongoing exploration of new therapeutic strategies. Palbociclib (PAL), a well-known cyclin-dependent kinase (CDK) inhibitor, plays a critical role in breast cancer treatment. While its efficacy is recognized, the interplay between PAL and cellular autophagy, particularly in the context of the RAF/MEK/ERK signaling pathway, remains insufficiently explored. This study investigates PAL's inhibitory effects on breast cancer using both in vitro (MCF7 and MDA-MB-468 cells) and in vivo (tumor-bearing nude mice) models. Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib (TRA), an MEK inhibitor, our research seeks to address the challenge of PAL-induced drug resistance. Our findings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells. However, PAL also induces protective autophagy, potentially leading to drug resistance via the RAF/MEK/ERK pathway activation. Introducing TRA effectively neutralized this autophagy, enhancing PAL's anti-tumor efficacy. A combination of PAL and TRA synergistically reduced cell viability and proliferation, and in vivo studies showed notable tumor size reduction. In conclusion, the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance, offering a new horizon in breast cancer treatment.


Asunto(s)
Autofagia , Neoplasias de la Mama , Piperazinas , Piridinas , Piridonas , Pirimidinonas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Femenino , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ratones Desnudos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Células MCF-7
3.
Front Pharmacol ; 15: 1408031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983916

RESUMEN

Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aß) aggregation, and targeting both Aß aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aß aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aß aggregate accumulation and mitigated Aß-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aß-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aß-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.

4.
Heliyon ; 10(11): e32230, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933948

RESUMEN

Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.

5.
Neurochem Res ; 49(8): 2197-2214, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834846

RESUMEN

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Barrera Hematorretinal , Ratones Transgénicos , Retina , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apoptosis/efectos de los fármacos , Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Ratones , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Humanos , Péptidos beta-Amiloides/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología , Masculino
6.
Neurobiol Dis ; 199: 106583, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942324

RESUMEN

After ischemic stroke (IS), secondary injury is intimately linked to endoplasmic reticulum (ER) stress and body-brain crosstalk. Nonetheless, the underlying mechanism systemic immune disorder mediated ER stress in human IS remains unknown. In this study, 32 candidate ER stress-related genes (ERSRGs) were identified by overlapping MSigDB ER stress pathway genes and DEGs. Three Key ERSRGs (ATF6, DDIT3 and ERP29) were identified using LASSO, random forest, and SVM-RFE. IS patients with different ERSRGs profile were clustered into two groups using consensus clustering and the difference between 2 group was further explored by GSVA. Through immune cell infiltration deconvolution analysis, and middle cerebral artery occlusion (MCAO) mouse scRNA analysis, we found that the expression of 3 key ERSRGs were closely related with peripheral macrophage cell ER stress in IS and this was further confirmed by RT-qPCR experiment. These ERS genes might be helpful to further accurately regulate the central nervous system and systemic immune response through ER stress and have potential application value in clinical practice in IS.


Asunto(s)
Biología Computacional , Estrés del Retículo Endoplásmico , Aprendizaje Automático , Humanos , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Ratones , Animales , Accidente Cerebrovascular/genética , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Masculino
9.
J Med Virol ; 96(5): e29669, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773784

RESUMEN

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Asunto(s)
ADN Circular , Furocumarinas , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Transcripción Genética , Furocumarinas/farmacología , Humanos , Animales , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/genética , Células Hep G2 , Ratones , ADN Circular/genética , ADN Circular/metabolismo , Transcripción Genética/efectos de los fármacos , Antivirales/farmacología , ADN Viral , Simulación del Acoplamiento Molecular , Replicación Viral/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Modelos Animales de Enfermedad , Regiones Promotoras Genéticas
10.
ChemSusChem ; 17(16): e202400608, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38747335

RESUMEN

A Cu/Co tandem catalysis protocol was developed to conduct the hydroformylation of olefins using CO2/H2 and PMHS (polymethylhydrosiloxane) as a readily available and environmentally friendly hydride source. This methodology was performed via a two-step approach consisting of the copper-catalyzed reduction of CO2 by hydrosilane and subsequent cobalt-promoted hydroformylation with H2 and the in situ formed CO. The optimized triphos oxide ligand, which presumably facilitates the migratory insertion of CO gives moderate to excellent yields for both terminal and internal alkenes. This earth-abundant metal catalysis provides a reliable and efficient way to afford useful aldehydes in industry using silicon by-product PMHS as hydrogen source and renewable CO2 as carbonyl source.

11.
Int J Biol Sci ; 20(6): 2236-2260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617546

RESUMEN

Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor ß (ERß), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERß. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERß.


Asunto(s)
Isoflavonas , Trombocitopenia , Humanos , Receptor beta de Estrógeno/genética , Trombocitopenia/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas
12.
Phytomedicine ; 127: 155463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452694

RESUMEN

BACKGROUND: Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aß) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD: In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS: Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aß and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION: Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo
13.
Neural Regen Res ; 19(11): 2467-2479, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526283

RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00027/figure1/v/2024-03-08T184507Z/r/image-tiff Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer's disease. Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases, including Parkinson's and Huntington's diseases, however, the effect of Citri Reticulatae Semen on Alzheimer's disease remains unelucidated. In the current study, the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated. Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy. In addition, Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro, and suppress amyloid-beta-induced pathology such as paralysis, in a transgenic Caenorhabditis elegans in vivo model. Moreover, genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent. Most importantly, Citri Reticulatae Semen extract was confirmed to improve cognitive impairment, neuronal injury and amyloid-beta burden in 3×Tg Alzheimer's disease mice. As revealed by both in vitro and in vivo models, these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer's disease via its neuroprotective autophagic effects.

14.
Biomolecules ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540688

RESUMEN

(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Aprendizaje Profundo , Trombocitopenia , Estados Unidos , Humanos , Redes Neurales de la Computación , Algoritmos
15.
Mech Ageing Dev ; 218: 111901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215997

RESUMEN

Pharmacological strategies to delay aging and combat age-related diseases are increasingly promising. This study explores the anti-aging and therapeutic effects of two novel 18-norspirostane steroidal saponins from Trillium tschonoskii Maxim, namely deoxytrillenoside CA (DTCA) and epitrillenoside CA (ETCA), using Caenorhabditis elegans (C. elegans). Both DTCA and ETCA significantly extended the lifespan of wild-type N2 worms and improved various age-related phenotypes, including muscle health, motility, pumping rate, and lipofuscin accumulation. Furthermore, these compounds exhibited notable alleviation of pathology associated with Parkinson's disease (PD) and Huntington's disease (HD), such as the reduction of α-synuclein and poly40 aggregates, improvement in motor deficits, and mitigation of neuronal damage. Meanwhile, DTCA and ETCA improved the lifespan and healthspan of PD- and HD-like C. elegans models. Additionally, DTCA and ETCA enhanced the resilience of C. elegans against heat and oxidative stress challenges. Mechanistic studies elucidated that DTCA and ETCA induced mitophagy and promoted mitochondrial biogenesis in C. elegans, while genetic mutations or RNAi knockdown affecting mitophagy and mitochondrial biogenesis effectively eliminated their capacity to extend lifespan and reduce pathological protein aggregates. Together, these compelling findings highlight the potential of DTCA and ETCA as promising therapeutic interventions for delaying aging and preventing age-related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Saponinas , Animales , Caenorhabditis elegans/metabolismo , Longevidad , Mitofagia , Biogénesis de Organelos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Saponinas/farmacología
16.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256942

RESUMEN

Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.

17.
CNS Neurosci Ther ; 30(4): e14515, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37905594

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS: The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS: In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION: Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidopamina/toxicidad , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad
18.
J Ethnopharmacol ; 323: 117638, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38135237

RESUMEN

THE ETHNOPHARMACOLOGICAL SIGNIFICANCE: Diabetic chronic foot ulcers pose a significant therapeutic challenge as a result of the oxidative stress caused by hyperglycemia. Which impairs angiogenesis and delays wound healing, potentially leading to amputation. Gynura divaricata (L.) DC. (GD), a traditional Chinese herbal medicine with hypoglycemic effects, has been proposed as a potential therapeutic agent for diabetic wound healing. However, the underlying mechanisms of its effects remain unclear. AIM OF THE STUDY: In this study, we aimed to reveal the effect and potential mechanisms of GD on accelerating diabetic wound healing in vitro and in vivo. MATERIALS AND METHODS: The effects of GD on cell proliferation, apoptosis, reactive oxygen species (ROS) production, migration, mitochondrial membrane potential (MMP), and potential molecular mechanisms were investigated in high glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) using CCK-8, flow cytometry assay, wound healing assay, immunofluorescence, DCFH-DA staining, JC-1 staining, and Western blot. Full-thickness skin defects were created in STZ-induced diabetic rats, and wound healing rate was tracked by photographing them every day. HE staining, immunohistochemistry, and Western blot were employed to investigate the effect and molecular mechanism of GD on wound healing in diabetic rats. RESULTS: GD significantly improved HUVEC survival, decreased apoptosis, lowered ROS production, restored MMP, improved migration ability, and raised VEGF expression. The use of Nrf2-siRNA completely abrogated these effects. Topical application of GD promoted angiogenesis and granulation tissue growth, resulting in faster healing of diabetic wounds. The expression of VEGF, CD31, and VEGFR was elevated in the skin tissue of diabetic rats after GD treatment, which upregulated HO-1, NQO-1, and Bcl-2 expression while downregulating Bax expression via activation of the Nrf2 signaling pathway. CONCLUSION: The findings of this study indicate that GD has the potential to serve as a viable alternative treatment for diabetic wounds. This potential arises from its ability to mitigate the negative effects of oxidative stress on angiogenesis, which is regulated by the Nrf2 signaling pathway. The results of our study offer valuable insights into the therapeutic efficacy of GD in the treatment of diabetic wounds, emphasizing the significance of directing interventions towards the Nrf2 signaling pathway to mitigate oxidative stress and facilitate the process of angiogenesis.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , Ratas , Humanos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas , Células Endoteliales de la Vena Umbilical Humana , Transducción de Señal
19.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003724

RESUMEN

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente , Péptidos beta-Amiloides/metabolismo , Éter/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Éteres de Etila/metabolismo , Éteres de Etila/farmacología , Éteres de Etila/uso terapéutico , Éteres/farmacología , Modelos Animales de Enfermedad
20.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894684

RESUMEN

Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. In this study, we investigate the potential therapeutic efficacy of elaiophylin, a novel compound, in targeting BxPC-3 and PANC-1 pancreatic cancer cells. We comprehensively explore elaiophylin's impact on apoptosis induction, proliferation inhibition, migration suppression, invasion attenuation, and angiogenesis inhibition, key processes contributing to cancer progression and metastasis. The results demonstrate that elaiophylin exerts potent pro-apoptotic effects, inducing a substantial increase in apoptotic cells. Additionally, elaiophylin significantly inhibits proliferation, migration, and invasion of BxPC-3 and PANC-1 cells. Furthermore, elaiophylin exhibits remarkable anti-angiogenic activity, effectively disrupting tube formation in HUVECs. Moreover, elaiophylin significantly inhibits the Wnt/ß-Catenin signaling pathway. Our findings collectively demonstrate the multifaceted potential of elaiophylin as a promising therapeutic agent against pancreatic cancer via inhibition of the Wnt/ß-Catenin signaling pathway. By targeting diverse cellular processes crucial for cancer progression, elaiophylin emerges as a prospective candidate for future targeted therapies. Further investigation of the in vivo efficacy of elaiophylin is warranted, potentially paving the way for novel and effective treatment approaches in pancreatic cancer management.


Asunto(s)
Apoptosis , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Vía de Señalización Wnt , Proliferación Celular , Movimiento Celular , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...