Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(12): 21063-21070, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36520937

RESUMEN

Silicon is a high-capacity material for the anode of a rechargeable lithium-ion battery. One of the fundamental challenges for using Si in anodes is capacity fading, which has been revealed to be partially associated with the interfacial instability between the Si and liquid electrolyte due to the large volume swing of Si upon charging and discharging. Smart nanoscale design concepts, either presynthesized or formed in situ, have led to the mitigation of the detrimental factors associated with the volume swing of Si. However, it has never been clear how the chemical state of Si evolves and contributes to the capacity fading upon battery cycling. Here, we use cryo-electron energy loss spectroscopy to directly monitor, at a subnanometer scale, the chemical evolution of Si upon battery cycling. We discover that during the cycling process Si particles are progressively oxidized to form SiO2, which is initiated from the particle surface and gradually penetrates toward the interior of the particle, directly contributing to the capacity fading. Possible mechanisms of Si oxidation are postulated. We further show how the cycling stability can be improved by an electrolyte additive to form an effective passivation layer, representatively, even a small concentration of fluoroethylene carbonate causes the formation of an LiF layer on the Si nanoparticle surface that prevents Si oxidation and improves cycling stability. The present work unveils Si oxidation as a previously unrecognized factor that contributes to capacity fading, therefore providing insight into the design of anodes with Si-based materials.

2.
ACS Appl Mater Interfaces ; 13(2): 2622-2629, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410655

RESUMEN

LiNi1-x-yMnxCoyO2 (NMC) is an important class of high-energy-density cathode materials. The possibility of changing both x and y in the chemical formula provides numerous materials with diverse electrochemical and structural properties. It is highly desirable to have guidance on correlating NMC structural and electrochemical properties with their chemical composition for material designing and screening. Here, using synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, electrochemical characterization, and literature survey, the content difference between Mn and Co (denoted as x-y in NMC) is identified as an effective indicator to estimate Li/transition metal (Li/TM) cation mixing ratio and first-cycle Coulombic efficiency (CE). In addition, a linear relationship between oxygen position "z" and the size difference between Li+ and TM cation (normalized by the c-axis length) is found, and such linearity can be used to accurately predict the oxygen position in NMC materials by considering the average TM cation size and c-axis length. It is also concluded that the shortest O-O distance in the bulk of NMC materials could not be shorter than 2.5 Ševen at a highly charged state. Therefore, oxygen release is not likely to take place from the bulk if the structure maintains the R3 ̅m symmetry.

3.
Science ; 370(6522): 1313-1317, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303612

RESUMEN

High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.

4.
ACS Appl Mater Interfaces ; 11(47): 44204-44213, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31692322

RESUMEN

The solid electrolyte interphase (SEI) layer plays an important role in altering the ion transport and modifying the structural evolution of the Li metal anode during repeated cycling. While the fundamental understanding of the SEI properties has been continuously advanced in recent years, effectively tuning the SEI components, especially the inorganic constituents, is still challenging. In this work, tungsten trioxide, WO3, is found to promote the formation of inorganic salts, for example, LiF/Li2CO3 in SEI layers, thereby enhancing the SEI properties such as mechanical and chemical stabilities. Additionally, WO3 is simultaneously reduced to electronic W nanoparticles during the electrochemical process, mitigating the formation of "dead" Li, which otherwise is completely wrapped by the accumulated insulating SEI layers. The possibility of WO3 in catalyzing electrolyte decomposition, through favored reaction pathway, to produce robust SEI layers is discussed. This work provides new insights into the control of the SEI properties on Li metal surfaces.

5.
ACS Appl Mater Interfaces ; 9(29): 24407-24421, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28617586

RESUMEN

The renaissance of Li-S battery technology is evidenced by the intensive R&D efforts in recent years. Although the theoretical capacity and energy of a Li-S battery is theoretically very high, the projected usable energy is expected to be no more than twice that of state-of-the-art Li-ion batteries, or 500 Wh/kg. The recent "sulfur fever" has certainly gathered new knowledge on sulfur chemistry and electrochemistry, electrolytes, lithium metal, and their interactions in this "new" system; however, a real advance toward a practical Li-S battery is still missing. One of the main reasons behind this is the sensitivity of Li-S batteries to the experimental testing parameters. Sophisticated nanostructures are usually employed, while the practicality of these nanomaterials for batteries is rarely discussed. The sulfur electrode, usually engineered in a thin-film configuration, further poses uncertainties in the knowledge transfer from the lab to industry. This review article briefly overviews the recent research progress on Li-S batteries, followed by a discussion of the Li-S battery system from the authors' own understandings collected from their past few years of research. The critical findings, the unresolved issues, and the scientific gap between lab research and industrial application are discussed. The future work in Li-S battery research is also explored to propel relevant research efforts toward industrial applications.

6.
Org Lett ; 10(13): 2661-4, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18507385

RESUMEN

Pd(OAc)(2) is an efficient catalyst precursor for Negishi coupling in the presence of Bu(4)NBr. Secondary and primary alkylzinc reagents with beta-H and arylzinc reagents all reacted with aryl iodides at temperatures as low as -20 degrees C, giving moderate to good yields. One example of coupling between alkynylzinc reagents and aryl iodides was tested and the yield was good. Preliminary kinetic studies indicated that the process involved PdNPs as the active catalytic species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...