Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
1.
Talanta ; 280: 126704, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151319

RESUMEN

The outbreak of highly pathogenic influenza virus subtypes, such as H7 and H5, presents a significant global health challenge, necessitating the development of rapid and sensitive diagnostic methods. In this study, we have developed a novel dual-component biosensor assembly, each component of which incorporates an antibody fused with a nano-luciferase subunit. Our results demonstrate the effectiveness of this biosensor in enabling the rapid and sensitive detection of influenza H7 and other subtypes. Additionally, we successfully applied the biosensor in paper-based assay and lateral flow assay formats, expanding its versatility and potential for field-deployable applications. Notably, we achieved effective detection of the H7N9 virus using this biosensor. Furthermore, we designed and optimized a dedicated biosensor to the sensitive detection of the influenza H5 subtype. Collectively, our findings underscore the significant potential of this dual-component biosensor assembly as a valuable and versatile tool for accurate and timely diagnosis of influenza virus infections, promising to advance the field of influenza diagnostics and contribute to outbreak management and surveillance efforts.

2.
Sci China Life Sci ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153050

RESUMEN

Diabetic foot ulcers (DFUs) are a serious vascular disease. Currently, no effective methods are available for treating DFUs. Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid levels to promote atherosclerosis. However, the role of PCSK9 in DFUs remains unclear. In this study, we found that the expression of PCSK9 in endothelial cells (ECs) increased significantly under high glucose (HG) stimulation and in diabetic plasma and vessels. Specifically, PCSK9 promotes the E3 ubiquitin-protein ligase NEDD4 binding to vascular endothelial growth factor receptor 2 (VEGFR2), which led to the ubiquitination of VEGFR2, resulting in its degradation and downregulation in ECs. Furthermore, PCSK9 suppresses the expression and activation of AKT, endothelial nitric oxide synthase (eNOS), and ERK1/2, leading to decreased nitric oxide (NO) production and increased superoxide anion (O2._) generation, which impairs vascular endothelial function and angiogenesis. Importantly, using evolocumab to limit the increase in PCSK9 expression blocked the HG-induced inhibition of NO production and the increase in O2._ production, as well as inhibited the phosphorylation and expression of AKT, eNOS, and ERK1/2. Moreover, evolocumab improved vascular endothelial function and angiogenesis, and promoted wound healing in diabetes. Our findings suggest that targeting PCSK9 is a novel therapeutic approach for treating DFUs.

3.
Biochem Biophys Res Commun ; 735: 150456, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39094230

RESUMEN

Piezo1 channels are activated by mechanical stress and play a significant role in cardiac hypertrophy and fibrosis. However, the molecular mechanisms underlying Piezo1 activation on the cell membrane following pressure overload remain unclear. Caveolae are known to mitigate mechanical forces and regulate Piezo1 function. Therefore, this study aimed to investigate the interaction between caveolae and Piezo1 in the development of pressure overload-induced cardiac remodeling. We observed reduced colocalization between Piezo1 and Caveolin-3 in hypertrophic cardiomyocytes following abdominal aortic constriction and Angiotensin-II treatment, accompanied by increased Piezo1 function and expression. Furthermore, enhanced Piezo1 function was also noted upon caveolae disruption using methyl-beta-cyclodextrin (mßCD). Thus, our findings suggested that pressure overload led to Piezo1 translocation from caveolae, thereby augmenting its function and expression, which may contribute to cardiac remodeling.

4.
Future Microbiol ; : 1-12, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109506

RESUMEN

Background: Aerococcus urinae and Aerococcus sanguinicola are emerging pathogens linked with urinary tract infections. We present a case series of A. urinae and A. sanguinicola isolates characterizing the spectrum of clinical presentation, microbiological characteristics and antimicrobial sensitivities. Methods: Retrospective chart review was performed on patients who grew positive cultures for A. urinae and A. sanguinicola identified on MALDI-TOF in Saskatchewan from January to June 2023. Demographic and clinical variables, antimicrobial susceptibility and prescription were documented. Results: This cohort (n = 115) had a median age 82 years. A. urinae and A. sanguinicola infections spanned from urinary tract infection (n = 96) to urosepsis (n = 6). These infections were predominantly monomicrobial (73.9%) and were susceptible to ceftriaxone, penicillin G and vancomycin. Antimicrobials were seldom prescribed within the urinary tract infection cohort (31.2%). Conclusion: Untreated A. urinae and A. sanguinicola infections can precipitate into urosepsis. The reported antimicrobial susceptibility for these Aerococcus isolates should be utilized to provide appropriate antimicrobial coverage.


Aerococcus urinae and Aerococcus sanguinicola are bacteria that can cause urine infections. They are often overlooked and thought to be unable to cause serious blood infections, such as sepsis. We collected data on 87 cases of A. urinae and 28 cases of A. sanguinicola to show that these bacteria can cause urine and blood infections in elderly patients. We also looked at other studies and summarized that patients with serious blood infections from these bacteria often had a previous urine infection from these same bacteria. These bacteria can be resistant to a common antibiotic used to treat urine infections. It is important to test and report if these bacteria are resistant to this common antibiotic and doctors must be aware that they can cause serious blood infections if not treated with the correct antibiotics.

5.
Ther Adv Med Oncol ; 16: 17588359241266188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108839

RESUMEN

Background: Tumor necrosis (TN) is a common feature in lung squamous cell carcinoma (LSCC), which could provide useful predictive and prognostic information. Objectives: This study aimed to investigate the effect of pretreatment pulmonary TN (PTN) on the prognosis of first-line anti-programmed cell death 1 (PD-1)/PD ligand 1 (PD-L1) inhibitor in advanced LSCC. Design: We conducted a retrospective study to analyze the association between the presence of PTN and clinical outcomes in advanced LSCC patients treated with anti-PD-1/PD-L1 inhibitors. Methods: Data from 240 eligible patients were collected from 27 hospitals across China between 2016 and 2020. The presence of PTN was assessed using contrast-enhanced chest computed tomography (CT) imaging at baseline. We utilized the Cox proportional-hazards regression model to analyze the association between PTN and clinical outcomes. In addition, to account for potential confounding factors and ensure comparability between groups, we employed propensity score-matching (PSM) analysis. Results: In the overall patient cohort, the presence of PTN was 39.6%. The median follow-up duration was 20.3 months. The positive PTN group exhibited a notably inferior median progression-free survival (PFS; 6.5 months vs 8.6 months, p = 0.012) compared to the negative PTN group. Within the Cox proportional-hazards regression model, PTN emerged as an independent predictor of unfavorable PFS (hazard ratio (HR) = 1.354, 95% confidence interval (CI): 1.002-1.830, p = 0.049). After PSM, the median PFS for the positive PTN group (6.5 months vs 8.0 months, p = 0.027) remained worse than that of the negative PTN group. Multivariate analyses also further underscored that the presence of PTN independently posed a risk for shorter PFS (HR = 1.494, 95% CI: 1.056-2.112, p = 0.023). However, no statistically significant difference in overall survival was observed between the two groups. Conclusion: Our study suggests that the presence of PTN on baseline contrast-enhanced chest CT is a potential negative prognostic imaging biomarker for the outcome of anti-PD-1/PD-L1 inhibitor therapy in advanced LSCC. Further studies are warranted to validate these findings and explore the underlying mechanisms.


Predicting anti-PD-1/PD-L1 inhibitor treatment outcomes: pulmonary tumor necrosis in lung squamous cell carcinoma Our study focused on lung squamous cell carcinoma (LSCC) patients receiving first-line anti-PD-1/PD-L1 therapy. We explored the impact of a feature called pretreatment pulmonary tumor necrosis (PTN) on their prognosis. PTN was identified in 39.6% of patients using baseline chest CT scans. Results revealed that patients with PTN had a shorter time without disease progression (median PFS of 6.5 months compared to 8.6 months) and a higher risk of unfavorable outcomes. This suggests that PTN may serve as a negative prognostic imaging marker for anti-PD-1/PD-L1 therapy in advanced LSCC. Further research is needed to confirm and understand these findings better.

6.
World J Clin Cases ; 12(22): 5032-5041, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39109041

RESUMEN

BACKGROUND: More and more evidence-based practices are emerging, but researchers mostly focus on short-term effects, resulting in evidence-based practices not being applied in the clinic in the long term. In this study, we took the evidence-based practice of perioperative airway management in elderly fracture patients as an example and adopted a descriptive phenomenological approach to understand the influencing factors of its sustainability to provide a reference basis for promoting the continuity of evidence-based practice in the clinic. AIM: To explore factors influencing the persistence of evidence-based practice in perioperative airway management in elderly patients with fractures. METHODS: This study was qualitative research. Nine nurses who implemented evidence-based practice in the orthopedic ward of a tertiary comprehensive hospital in Shanghai from September 2023 to October 2023 were selected using purposive sampling as research subjects. Semi-structured interviews were conducted with them, and the data were analyzed using the Colaizzi phenomenological analysis method based on the three dimensions and ten factors of the NHS sustainability model. RESULTS: Three main themes and ten subthemes were identified: Process aspects (benefits to patients, benefits to nurses, lack of follow-up, complex processes); staff aspects (insufficient human resources, inadequate training and education, lack of leadership support); and organizational environment aspects (inadequate infrastructure, poor patient compliance, poor doctor cooperation). CONCLUSION: Human resources, training and education, leadership support, infrastructure, and patient-physician collaboration are important factors influencing the sustainability of evidence-based practice for perioperative airway management in older patients with fractures.

7.
Am J Transl Res ; 16(7): 3376-3384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114688

RESUMEN

OBJECTIVE: To compare the clinical value of multi-slice spiral computed tomography (MSCT) low-dose three-dimensional reconstruction and traditional X-ray in the auxiliary diagnosis of distal radius epiphyseal injury in children. METHODS: A retrospective analysis was performed on 105 children with distal radius bone scale injury (classified by Salter-Harris classification) admitted from March 2020 to June 2022. All children underwent MSCT three-dimensional reconstruction examination and traditional X-ray examination. The detection rate of epiphyseal injury of the distal radius was compared, along with the resolution, sensitivity and specificity. The image clarity and display degree of bone structure were analyzed. The radiation dose-related indicators and the time required for diagnosis were compared. RESULTS: The detection rate and diagnostic accuracy of MSCT (100%, 92.38%) was significantly higher than that of X-ray (76.19%, 64.76%). In terms of radiation dose index, the volume dose index CTDI of MSCT ranged from 1-5 mGy while the X-ray group ranged from 5-10 mGy. The dose length product (DLP) value of the MSCT group was lower than in the X-ray group (20-100 mGy·cm vs. 50-150 mGy·cm). The diagnostic scan time for MSCT was shorter than that of conventional X-ray. The acceptance rate with MSCT was 99%, significantly higher than that with conventional X-ray (85%). CONCLUSIONS: Low-dose three-dimensional reconstruction of MSCT in the diagnosis of epiphyseal injury of distal radius in children shows significant advantages over traditional CT in the detection rate, diagnostic accuracy, postoperative reduction quality evaluation, and radiation dose.

8.
BMC Gastroenterol ; 24(1): 285, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179979

RESUMEN

Microsatellite instability (MSI) has been widely acknowledged as an important factor regulating tumor intrinsic biological behavior and affecting the survival of gastric cancer patients. Here, we firstly identified the RARB as a gene associated with MSI gastric cancer. RARB was downregulated in human gastric cancer tissues compared to paired paracancerous tissues, Knockdown of RARB accelerated the proliferation, invasion and migration of cancer cells in vitro. Mechanismly, RARB knockdown promoted epithelial-mesenchymal transition (EMT) process of gastric cancer. However, RARBLow patients exhibited better survival compared to RARBHigh patients. Further study revealed that RARB expression was inversely correlated with MSI status and immune infiltrates in vivo. Thus, RARB may be a potential target for the treatment of gastric cancer.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Inestabilidad de Microsatélites , Receptores de Ácido Retinoico , Neoplasias Gástricas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Técnicas de Silenciamiento del Gen , Invasividad Neoplásica/genética , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
9.
J Ethnopharmacol ; : 118704, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 1.25-50 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.

10.
Anal Chem ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194639

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates various physiological and pathological processes in the central nervous system. It is vital to develop an effective method to detect H2S in vivo to elucidate its critical role. However, current fluorescent probes for accurate quantification of H2S still face big challenges due to complicated fabrication, small Stokes shift, unsatisfactory selectivity, and especially delayed response time. Herein, based on simple postsynthetic modification, we present an innovative strategy by confining H2S-triggered thiolysis of dinitrophenyl (DNP) ether within a luminescent metal-organic framework (MOF) to address those issues. Due to the cleavage of the DNP moiety by H2S, the nanoprobe gives rise to a remarkable fluorescence turn-on signal with a large Stokes shift of 190 nm and also provides high selectivity to H2S against various interferents including competing biothiols. In particular, by virtue of the unique structural property of the MOF, it exhibits an ultrafast sensing ability for H2S (only 5 s). Moreover, the fluorescence enhancement efficiency displays a good linear correlation with H2S concentration in the range of 0-160 µM with a detection limit of 0.29 µM. Importantly, these superior sensing performances enable the nanoprobe to measure the basal value and monitor the change of H2S level in the rat brain.

11.
Technol Cancer Res Treat ; 23: 15330338241272043, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149934

RESUMEN

PURPOSE: Research on bone metastasis in esophageal cancer (EC) is relatively limited. Once bone metastasis occurs in patients, their prognosis is poor, and it severely affects their quality of life. Currently, there is a lack of convenient tumor markers for early identification of bone metastasis in EC. Our research aims to explore whether neutrophil-lymphocyte ratio (NLR) can predict bone metastasis in patients with EC. METHODS: Retrospective analysis of clinical indicators was performed on 604 patients with EC. They were divided into groups based on whether or not there was bone metastasis, and the patients' coagulation-related tests, blood routine, tumor markers and other indicators were collected. The receiver operating characteristic curve (ROC) were used to determine the predictive ability of parameters such as NLR for bone metastasis in EC, and univariate and multivariate logistic regression analyses were conducted to determine the impact of each indicator on bone metastasis. Using binary logistic regression to obtain the predictive probability of NLR combined with tumor markers. RESULTS: ROC curves analysis suggested that the area under the curve (AUC) of the NLR was 0.681, with a sensitivity of 79.2% and a specificity of 52.6%, which can be used as a predictive factor for bone metastasis in EC. Multivariate logistic regression analysis showed that high NLR (odds ratio [OR]: 2.608, 95% confidence interval [CI]: 1.395-4.874, P = 0.003) can function as an independent risk factor for bone metastasis in patients with EC. Additionally, high PT, high APTT, high FDP, high CEA, high CA724, low hemoglobin, and low platelet levels can also predict bone metastasis in EC. When NLR was combined with tumor markers, the area under the curve was 0.760 (95% CI: 0.713-0.807, P < 0.001), significantly enhancing the predictability of bone metastasis in EC. CONCLUSION: NLR, as a convenient, non-invasive, and cost-effective inflammatory indicator, could predict bone metastasis in EC. Combining NLR with tumor markers can significantly improve the diagnostic accuracy of bone metastasis in EC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Óseas , Neoplasias Esofágicas , Linfocitos , Neutrófilos , Curva ROC , Humanos , Neutrófilos/patología , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/sangre , Neoplasias Óseas/secundario , Neoplasias Óseas/sangre , Femenino , Masculino , Linfocitos/patología , Persona de Mediana Edad , Pronóstico , Anciano , Estudios Retrospectivos , Biomarcadores de Tumor/sangre , Adulto , Recuento de Linfocitos , Recuento de Leucocitos
12.
iScience ; 27(7): 110219, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021795

RESUMEN

The resected pⅢA-N2 non-small-cell lung cancer (NSCLC) patients who could benefit from postoperative radiotherapy (PORT) are not well-defined. The study explored the role of PORT on EGFR mutant and wild-type NSCLC patients. We retrospectively searched for resected pIIIA-N2 lung adenocarcinoma patients who underwent EGFR mutation testing. 80 patients with EGFR wild-type and 85 patients with EGFR mutation were included. 62 patients received PORT. In overall population, the median disease-free survival (DFS) was improved in PORT arm compared to non-PORT arm (22.9 vs. 16.1 months; p = 0.036), along with higher 2-year locoregional recurrence-free survival (LRFS) rate (88.3% vs. 69.3%; p = 0.004). In EGFR wild-type patients, PORT was associated with a longer median DFS (23.3 vs. 17.2 months; p = 0.044), and a higher 2-year LRFS rate (86.8% vs. 61.9%; p = 0.012). In EGFR mutant patients, PORT was not significantly correlated with improved survival outcomes. EGFR wild-type may a biomarker to identify the cohort that benefits from PORT.

13.
Adv Sci (Weinh) ; : e2404328, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052873

RESUMEN

Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO2 (LCO) and LiFePO4 (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs). 2D MXene and its derived materials can achieve almost all of the above functions due to their numerous active sites, external groups, and ease of synthesis and modification. This review comprehensively summarizes the functionalization advantages of MXene-based materials in Li-S batteries, including high-speed ionic conduction, structural diversity, shuttle effect inhibition, dendrite suppression, and catalytic activity from fundamental principles to practical applications. The classification of usage methods is also discussed. Finally, leveraging the research progress of MXene, the potential and prospects for its novel application in the Li-S field are proposed.

14.
J Sci Food Agric ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953326

RESUMEN

BACKGROUND: Giant salamander protein peptide is a peptide with rich functional properties. Giant salamander protein peptide KGEYNK (KK-6) is a peptide with both antioxidant and anti-inflammatory properties. The antioxidant and anti-inflammatory mechanisms of KK-6 are still unclear. When we studied the functional mechanism of KK-6, we found that the antioxidant property of KK-6 has a synergistic and promoting effect on anti-inflammatory properties. RESULTS: KK-6 enhances cellular resistance to LPS via the MAPK/NF-κB signaling pathway, leading to increased levels of inflammatory factors: interleukin-1ß (764.81 ng mL-1), interleukin-6 (1.06 ng mL-1) and tumor necrosis factor-α (4440.45 ng mL-1). KK-6 demonstrates potent antioxidant properties by activating the Nrf2 signaling pathway, resulting in elevated levels of antioxidant enzymes (glutathione peroxidase: 0.03 µg mL-1; superoxide dismutase: 0.589 µg mL-1) and a reduction in the concentration of the oxidative product malondialdehyde (967.05 µg mL-1). CONCLUSION: Our findings highlight the great potential of KK-6, a peptide extracted from giant salamander protein, as a remedy for intestinal inflammation. Through its dual role as an antioxidant and anti-inflammatory agent, KK-6 offers a promising avenue for alleviating inflammation-related damage and oxidative stress. This study lays the foundation for further exploration of giant salamander products and highlights their importance in health and novel food development. © 2024 Society of Chemical Industry.

15.
Taiwan J Obstet Gynecol ; 63(4): 545-548, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004484

RESUMEN

OBJECTIVE: We present prenatal diagnosis of de novo 10p12.1p11.23 microdeletion encompassing the WAC gene in a fetus associated with bilateral hydronephrosis on prenatal ultrasound. CASE REPORT: A 40-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. Level II ultrasound at 22 weeks of gestation revealed bilateral hydronephrosis and right clubfoot. At 23 weeks of gestation, repeat amniocentesis revealed the result of arr [GRCh37] 10p12.1p11.23 (26,182,512-29,826,276) × 1 dn with a 3.6-Mb microdeletion of 10p12.1p11.23 encompassing the genes of MYO3A, GAD2, APBB1IP, PDSS1, ABI1, ANKRD26, YME1L1, MASTL, ACBD5, PTCHD3, RAB18, MKX, ODAD2, MPP7, WAC and BAMBI. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism of low-set ears, broad forehead and flat nasal bridge. Array comparative genomic hybridization (aCGH) analysis of umbilical cord confirmed a 3.6-Mb 10p12.1p11.23 microdeletion encompassing WAC. CONCLUSION: Application of aCGH is useful in the pregnancy with a normal fetal karyotype and abnormal fetal ultrasound.


Asunto(s)
Amniocentesis , Deleción Cromosómica , Cromosomas Humanos Par 10 , Pie Equinovaro , Hidronefrosis , Ultrasonografía Prenatal , Humanos , Femenino , Pie Equinovaro/genética , Pie Equinovaro/diagnóstico por imagen , Embarazo , Adulto , Hidronefrosis/genética , Hidronefrosis/diagnóstico por imagen , Cromosomas Humanos Par 10/genética , Aborto Inducido
16.
Int J Biol Macromol ; 277(Pt 1): 134151, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059534

RESUMEN

Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Técnicas de Amplificación de Ácido Nucleico , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/genética , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/virología , Técnicas de Diagnóstico Molecular/métodos , Porcinos , Sistemas CRISPR-Cas , Sensibilidad y Especificidad , ARN Viral/genética , ARN Viral/análisis
17.
Sci Rep ; 14(1): 15957, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987376

RESUMEN

We previously identified that serum EFNA1 and MMP13 were potential biomarker for early detection of esophageal squamous cell carcinoma. In this study, our aim is to explore the diagnostic value of serum EFNA1 and MMP13 for gastric cancer. We used enzyme-linked immunosorbent assay (ELISA) to detect the expression levels of serum EFNA1 and MMP13 in 210 GCs and 223 normal controls. The diagnostic value of EFNA1 and MMP13 was evaluated in an independent cohorts of GC patients and normal controls (n = 238 and 195, respectively). Receiver operating characteristics were used to calculate diagnostic accuracy. In training and validation cohorts, serum EFNA1 and MMP13 levels in the GC groups were significantly higher than those in the normal controls (P < 0.001). The area under the curve (AUC) of the combined detection of serum EFNA1 and MMP13 for GC was improved (0.794), compared with single biomarker used. Similar results were observed in the validation cohort. Importantly, the combined measurement of serum EFNA1 and MMP13 to detect early-stage GC also had acceptable diagnostic accuracy in training and validation cohort. Combined detection of serum EFNA1 and MMP13 could help identify early-stage GC, suggesting that it may be a promising tool for the early detection of GC.


Asunto(s)
Biomarcadores de Tumor , Metaloproteinasa 13 de la Matriz , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/sangre , Neoplasias Gástricas/diagnóstico , Biomarcadores de Tumor/sangre , Femenino , Masculino , Persona de Mediana Edad , Metaloproteinasa 13 de la Matriz/sangre , Anciano , Curva ROC , Adulto , Estudios de Casos y Controles , Detección Precoz del Cáncer/métodos
18.
Microbiol Res ; 287: 127824, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053076

RESUMEN

The gut microbial metabolite trimethylamine N-oxide (TMAO) is regarded as a novel risk factor for hypertension. Berberine (BBR) exerts cardiovascular protective effects by regulating the gut microbiota-metabolite production pathway. However, whether and how BBR alleviates TMAO-induced vascular dysfunction in hypertension remains unclear. In the present study, we observed that plasma TMAO and related bacterial abundance were significantly elevated and negatively correlated with vascular function in 86 hypertensive patients compared with 46 normotensive controls. TMAO activated endoplasmic reticulum stress (ERS) signaling pathway to promote endothelial cell dysfunction and apoptosis in vitro. BBR (100, 200 mg ·â€¯kg-1 ·d-1) for 4 weeks ameliorates TMAO-induced vascular dysfunction and ERS activation in a choline-angiotensin II hypertensive mouse model. We found that plasma TMAO levels in 15 hypertensive patients treated with BBR (0.4 g, tid) were reduced by 8.8 % and 16.7 % at months 1 and 3, respectively, compared with pretreatment baseline. The oral BBR treatment also improved vascular function and lowered blood pressure. Faecal 16 S rDNA showed that BBR altered the gut bacterial composition and reduced the abundance of CutC/D bacteria in hypertensive mice and patients. In vitro bacterial cultures and enzyme reaction systems indicated that BBR inhibited the biosynthesis of TMAO precursor in the gut microbiota by binding to and inhibiting the activity of CutC/D enzyme. Our results indicate that BBR improve vascular dysfunction at least partially by decreasing TMAO via regulation of the gut microbiota in hypertension.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Microbioma Gastrointestinal , Hipertensión , Metilaminas , Berberina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Metilaminas/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Masculino , Persona de Mediana Edad , Femenino , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Regulación hacia Abajo/efectos de los fármacos , Anciano , Presión Sanguínea/efectos de los fármacos , Apoptosis/efectos de los fármacos , Heces/microbiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo
19.
J Virol ; 98(8): e0092624, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082816

RESUMEN

The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE: SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.


Asunto(s)
Proteínas de la Nucleocápside , Multimerización de Proteína , Animales , Proteínas de la Nucleocápside/inmunología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/genética , Cristalografía por Rayos X , Porcinos , Epítopos/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Unión Proteica , Anticuerpos Antivirales/inmunología , Humanos , Dominios Proteicos , Modelos Moleculares
20.
Anal Chim Acta ; 1318: 342918, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067912

RESUMEN

Pseudorabies viruses (PRV) pose a major threat to the global pig industry and public health. Rapid, intuitive, affordable, and accurate diagnostic testing is critical for controlling and eradicating infectious diseases. In this study, a portable detection platform based on RPA-CRISPR/EsCas13d was developed. The platform exhibits high sensitivity (1 copy/µL), good specificity, and no cross-reactivity with common pathogens. The platform uses rapid preamplification technology to provide visualization results (lateral flow assays or visual fluorescence) within 1 h. Fifty pig samples (including tissues, oral fluids, and serum) were tested using this platform and real-time quantitative polymerase chain reaction (qPCR), showing 34.0 % (17 of 50) PRV positivity with the portable CRISPR/EsCas13d dual-readout platform, consistent with the qPCR results. These results highlight the stability, sensitivity, efficiency, and low equipment requirements of the portable platform. Additionally, a novel point-of-care test is being developed for clinical use in remote rural and resource-limited areas, which could be a prospective measure for monitoring the progression of pseudorabies and other infectious diseases worldwide.


Asunto(s)
Sistemas CRISPR-Cas , Herpesvirus Suido 1 , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/aislamiento & purificación , Animales , Porcinos , Sistemas CRISPR-Cas/genética , Seudorrabia/diagnóstico , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...