Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 169: 105552, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37257698

RESUMEN

The accumulation of amyloid ß (Aß) containing senile plaques is one of the key histopathological hallmarks of Alzheimer's disease (AD). Increasing evidences demonstrated the important role of autophagy in Aß clearance. Recent studies implied that extracts from Semiaquilegia adoxoides (DC.) Makino could ameliorate the memory of D-galactose induced aging mice. However, the bioactive substance and underlying mechanism remains unknown. Thus, the present study sought to explore the effects of a novel homogenous peptidoglycan on Aß42 secretion and the underlying mechanism. Briefly, we extracted a novel peptidoglycan named SA02C using hot water extraction and alcohol precipitation with the Mw of 13.72 kDa. SA02C contains 73.33% carbohydrate and 27.83% protein. The structure characterization revealed that its glycan part might mainly composed of galacturonic acid with minor rhamnose in backbone, and branched with glucose, galactose, arabinose, xylose and galacturonic acid. The protein or peptide moiety in SA02C was bonded to the polysaccharide via threonine. Bioactivities test showed that SA02C could reduce Aß42 production in a dose dependent manner with no obvious cytotoxicity. Mechanism study demonstrated that SA02C could modulate APP processing by upregulating the expression of ADAM10, sAPPα and downregulating BACE1, sAPPß. Furthermore, SA02C also could stimulate autophagy by promoting the expression of the markers of autophagy such as LC3B and ATG5, resulting in the promotion of Aß42 phagocytosis.


Asunto(s)
Enfermedad de Alzheimer , Semiaquilegia , Ratones , Animales , Péptidos beta-Amiloides , Secretasas de la Proteína Precursora del Amiloide , Peptidoglicano , Ácido Aspártico Endopeptidasas/metabolismo , Estructura Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Autofagia , Polisacáridos
2.
Drug Metab Dispos ; 47(6): 556-566, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30923035

RESUMEN

Generally, diabetes remarkably alters the expression and function of intestinal drug transporters. Nateglinide and bumetanide are substrates of monocarboxylate transporter 6 (MCT6). We investigated whether diabetes down-regulated the function and expression of intestinal MCT6 and the possible mechanism in diabetic rats induced by a combination of high-fat diet and low-dose streptozocin. Our results indicated that diabetes significantly decreased the oral plasma exposure of nateglinide. The plasma peak concentration and area under curve in diabetic rats were 16.9% and 28.2% of control rats, respectively. Diabetes significantly decreased the protein and mRNA expressions of intestinal MCT6 and oligopeptide transporter 1 (PEPT1) but up-regulated peroxisome proliferator-activated receptor γ (PPARγ) protein level. Single-pass intestinal perfusion demonstrated that diabetes prominently decreased the absorption of nateglinide and bumetanide. The MCT6 inhibitor bumetanide, but not PEPT1 inhibitor glycylsarcosine, significantly inhibited intestinal absorption of nateglinide in rats. Coadministration with bumetanide remarkably decreased the oral plasma exposure of nateglinide in rats. High concentrations of butyrate were detected in the intestine of diabetic rats. In Caco-2 cells (a human colorectal adenocarcinoma cell line), bumetanide and MCT6 knockdown remarkably inhibited the uptake of nateglinide. Butyrate down-regulated the function and expression of MCT6 in a concentration-dependent manner but increased PPARγ expression. The decreased expressions of MCT6 by PPARγ agonist troglitazone or butyrate were reversed by both PPARγ knockdown and PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Four weeks of butyrate treatment significantly decreased the oral plasma concentrations of nateglinide in rats, accompanied by significantly higher intestinal PPARγ and lower MCT6 protein levels. In conclusion, diabetes impaired the expression and function of intestinal MCT6 partly via butyrate-mediated PPARγ activation, decreasing the oral plasma exposure of nateglinide.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Transportadores de Ácidos Monocarboxílicos/metabolismo , PPAR gamma/metabolismo , Estreptozocina/administración & dosificación , Animales , Butiratos/farmacología , Células CACO-2 , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Absorción Intestinal/efectos de los fármacos , Masculino , Nateglinida/farmacología , Transportador de Péptidos 1/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...