Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Diabetes Care ; 47(6): 1042-1047, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652672

RESUMEN

OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs77142250 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Polimorfismo de Nucleótido Simple
2.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38014529

RESUMEN

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Grosor Intima-Media Carotídeo , Factores de Riesgo , Aterosclerosis/genética , Genómica
3.
J Endocr Soc ; 7(11): bvad123, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37841955

RESUMEN

Context: Both type 1 diabetes (T1D) and type 2 diabetes (T2D) have significant genetic contributions to risk and understanding their overlap can offer clinical insight. Objective: We examined whether a T1D polygenic score (PS) was associated with a diagnosis of T2D in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods: We constructed a T1D PS using 79 known single nucleotide polymorphisms associated with T1D risk. We analyzed 13 792 T2D cases and 14 169 controls from CHARGE cohorts to determine the association between the T1D PS and T2D prevalence. We validated findings in an independent sample of 2256 T2D cases and 27 052 controls from the Mass General Brigham Biobank (MGB Biobank). As secondary analyses in 5228 T2D cases from CHARGE, we used multivariable regression models to assess the association of the T1D PS with clinical outcomes associated with T1D. Results: The T1D PS was not associated with T2D both in CHARGE (P = .15) and in the MGB Biobank (P = .87). The partitioned human leukocyte antigens only PS was associated with T2D in CHARGE (OR 1.02 per 1 SD increase in PS, 95% CI 1.01-1.03, P = .006) but not in the MGB Biobank. The T1D PS was weakly associated with insulin use (OR 1.007, 95% CI 1.001-1.012, P = .03) in CHARGE T2D cases but not with other outcomes. Conclusion: In large biobank samples, a common variant PS for T1D was not consistently associated with prevalent T2D. However, possible heterogeneity in T2D cannot be ruled out and future studies are needed do subphenotyping.

4.
Diabetes Care ; 46(11): 1978-1985, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756531

RESUMEN

OBJECTIVE: Clonal hematopoiesis of indeterminate potential (CHIP) is an aging-related accumulation of somatic mutations in hematopoietic stem cells, leading to clonal expansion. CHIP presence has been implicated in atherosclerotic coronary heart disease (CHD) and all-cause mortality, but its association with incident type 2 diabetes (T2D) is unknown. We hypothesized that CHIP is associated with elevated risk of T2D. RESEARCH DESIGN AND METHODS: CHIP was derived from whole-genome sequencing of blood DNA in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) prospective cohorts. We performed analysis for 17,637 participants from six cohorts, without prior T2D, cardiovascular disease, or cancer. We evaluated baseline CHIP versus no CHIP prevalence with incident T2D, including associations with DNMT3A, TET2, ASXL1, JAK2, and TP53 variants. We estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs with adjustment for age, sex, BMI, smoking, alcohol, education, self-reported race/ethnicity, and combined cohorts' estimates via fixed-effects meta-analysis. RESULTS: Mean (SD) age was 63.4 (11.5) years, 76% were female, and CHIP prevalence was 6.0% (n = 1,055) at baseline. T2D was diagnosed in n = 2,467 over mean follow-up of 9.8 years. Participants with CHIP had 23% (CI 1.04, 1.45) higher risk of T2D than those with no CHIP. Specifically, higher risk was for TET2 (HR 1.48; CI 1.05, 2.08) and ASXL1 (HR 1.76; CI 1.03, 2.99) mutations; DNMT3A was nonsignificant (HR 1.15; CI 0.93, 1.43). Statistical power was limited for JAK2 and TP53 analyses. CONCLUSIONS: CHIP was associated with higher incidence of T2D. CHIP mutations located on genes implicated in CHD and mortality were also related to T2D, suggesting shared aging-related pathology.


Asunto(s)
Enfermedad Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Femenino , Persona de Mediana Edad , Masculino , Hematopoyesis Clonal/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudios Prospectivos , Hematopoyesis/genética , Evolución Clonal , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/genética , Mutación
5.
medRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546893

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk among people with T2D are only partially understood. We hypothesized that a genetic association study among people with T2D at risk for developing incident cardiovascular complications could provide insights into molecular genetic aspects underlying CVD. METHODS: From 16 studies of the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-wide association study (GWAS) for incident CVD among people with T2D using Cox proportional hazards models. Incident CVD was defined based on a composite of coronary artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association with incident CVD among patients with T2D. RESULTS: A total of 49,230 participants with T2D were included in the analyses (31,118 European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 18.2%). We identified three novel, distinct genetic loci for incident CVD among individuals with T2D that reached the threshold for genome-wide significance (P<5.0×10-8): rs147138607 (intergenic variant between CACNA1E and ZNF648) with a hazard ratio (HR) 1.23, 95% confidence interval (CI) 1.15 - 1.32, P=3.6×10-9, rs11444867 (intergenic variant near HS3ST1) with HR 1.89, 95% CI 1.52 - 2.35, P=9.9×10-9, and rs335407 (intergenic variant between TFB1M and NOX3) HR 1.25, 95% CI 1.16 - 1.35, P=1.5×10-8. Among 204 known CAD loci, 32 were associated with incident CVD in people with T2D with P<0.05, and 5 were significant after Bonferroni correction (P<0.00024, 0.05/204). A polygenic score of these 204 variants was significantly associated with incident CVD with HR 1.14 (95% CI 1.12 - 1.16) per 1 standard deviation increase (P=1.0×10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.

7.
Cancer Immunol Immunother ; 72(7): 2179-2193, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36853330

RESUMEN

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B2 (LILRB2) was reported to be an inhibitory molecule with suppressive functions. sEVs mediate communication between cancer cells and other cells. However, the existence of LILRB2 on sEVs in circulation and the function of sEVs-LILRB2 are still unknown. This study aims to investigate the role of LILRB2 in GBM and determine how LILRB2 in sEVs regulates tumor immunity. METHODS: LILRB2 expression in normal brain and GBM tissues was detected by immunohistochemistry, and the effect of LILRB2 on prognosis was evaluated in an orthotopic brain tumor model. Next, a subcutaneous tumor model was constructed to evaluate the function of pirb in vivo. The immune cells in the tumor sites and spleen were detected by immunofluorescence staining and flow cytometry. Then, the presence of pirb in sEVs was confirmed by WB. The percentage of immune cells after incubation with sEVs from GL261 (GL261-sEVs) or sEVs from GL261-pirb+ (GL261-sEVs-pirb) was detected by flow cytometry. Then, the effect of pirb on sEVs was evaluated by a tumor-killing assay and proliferation assay. Finally, subcutaneous tumor models were constructed to evaluate the function of pirb on sEVs. RESULTS: LILRB2 was overexpressed in human GBM tissue and was closely related to an immunosuppressive TME in GBM. Then, a protumor ability of LILRB2 was observed in subcutaneous tumor models, which was related to lower CD8 + T cells and higher MDSCs (myeloid-derived suppressor cells) in the tumor and spleen compared to those of the control group. Next, we found that pirb on sEVs (sEVs-pirb) inhibits the function of CD8 + T cells by promoting the formation and expansion of MDSCs. Furthermore, the protumor function of sEVs-pirb was demonstrated in subcutaneous tumor models. CONCLUSION: We discovered that LILRB2/pirb can be transmitted between GBM cells via sEVs and that pirb on sEVs induces the formation and expansion of MDSCs. The induced MDSCs facilitate the formation of an immunosuppressive TME.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Células Supresoras de Origen Mieloide , Humanos , Glioblastoma/patología , Receptores Inmunológicos/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo
8.
Stat Med ; 42(10): 1625-1639, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36822218

RESUMEN

We focus on identifying genomics risk factors of higher body mass index (BMI) incorporating a priori information, such as biological pathways. However, the commonly used methods to incorporate prior information provide a model for the mean function of the outcome and rely on unmet assumptions. To address these concerns, we propose a method for nonparametric additive quantile regression with network regularization to incorporate the information encoded by known networks. To account for nonlinear associations, we approximate the unknown additive functional effect of each predictor with the expansion of a B-spline basis. We implement the group Lasso penalty to obtain a sparse model. We define the network-constrained penalty by the total ℓ 2 $$ {\ell}_2 $$ norm of the difference between the effect functions of any two linked genes in the known network. We further propose an efficient computation procedure to solve the optimization problem that arises in our model. Simulation studies show that our proposed method performs well in identifying more truly associated genes and less falsely associated genes than alternative approaches. We apply the proposed method to analyze the microarray gene-expression dataset in the Framingham Heart Study and identify several 75 percentile BMI associated genes. In conclusion, our proposed approach efficiently identifies the outcome-associated variables in a nonparametric additive quantile regression framework by leveraging known network information.


Asunto(s)
Genómica , Humanos , Índice de Masa Corporal , Simulación por Computador
9.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693378

RESUMEN

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proinsulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Insulina/genética , Insulina/metabolismo , Glucosa , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
10.
Commun Biol ; 5(1): 756, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902682

RESUMEN

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ayuno , Diabetes Mellitus Tipo 2/genética , Glucosa , Humanos , Insulina/genética , National Heart, Lung, and Blood Institute (U.S.) , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Receptores Inmunológicos/genética , Estados Unidos
11.
Diabetes Care ; 45(1): 232-240, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789503

RESUMEN

OBJECTIVE: LDL cholesterol (LDLc)-lowering drugs modestly increase body weight and type 2 diabetes risk, but the extent to which the diabetogenic effect of lowering LDLc is mediated through increased BMI is unknown. RESEARCH DESIGN AND METHODS: We conducted summary-level univariable and multivariable Mendelian randomization (MR) analyses in 921,908 participants to investigate the effect of lowering LDLc on type 2 diabetes risk and the proportion of this effect mediated through BMI. We used data from 92,532 participants from 14 observational studies to replicate findings in individual-level MR analyses. RESULTS: A 1-SD decrease in genetically predicted LDLc was associated with increased type 2 diabetes odds (odds ratio [OR] 1.12 [95% CI 1.01, 1.24]) and BMI (ß = 0.07 SD units [95% CI 0.02, 0.12]) in univariable MR analyses. The multivariable MR analysis showed evidence of an indirect effect of lowering LDLc on type 2 diabetes through BMI (OR 1.04 [95% CI 1.01, 1.08]) with a proportion mediated of 38% of the total effect (P = 0.03). Total and indirect effect estimates were similar across a number of sensitivity analyses. Individual-level MR analyses confirmed the indirect effect of lowering LDLc on type 2 diabetes through BMI with an estimated proportion mediated of 8% (P = 0.04). CONCLUSIONS: These findings suggest that the diabetogenic effect attributed to lowering LDLc is partially mediated through increased BMI. Our results could help advance understanding of adipose tissue and lipids in type 2 diabetes pathophysiology and inform strategies to reduce diabetes risk among individuals taking LDLc-lowering medications.


Asunto(s)
Diabetes Mellitus Tipo 2 , LDL-Colesterol , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética , Factores de Riesgo
12.
Nat Genet ; 53(6): 840-860, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059833

RESUMEN

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Asunto(s)
Glucemia/genética , Carácter Cuantitativo Heredable , Población Blanca/genética , Alelos , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Herencia Multifactorial/genética , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética
13.
Sci Rep ; 11(1): 2518, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510268

RESUMEN

Because single genetic variants may have pleiotropic effects, one trait can be a confounder in a genome-wide association study (GWAS) that aims to identify loci associated with another trait. A typical approach to address this issue is to perform an additional analysis adjusting for the confounder. However, obtaining conditional results can be time-consuming. We propose an approximate conditional phenotype analysis based on GWAS summary statistics, the covariance between outcome and confounder, and the variant minor allele frequency (MAF). GWAS summary statistics and MAF are taken from GWAS meta-analysis results while the traits covariance may be estimated by two strategies: (i) estimates from a subset of the phenotypic data; or (ii) estimates from published studies. We compare our two strategies with estimates using individual level data from the full GWAS sample (gold standard). A simulation study for both binary and continuous traits demonstrates that our approximate approach is accurate. We apply our method to the Framingham Heart Study (FHS) GWAS and to large-scale cardiometabolic GWAS results. We observed a high consistency of genetic effect size estimates between our method and individual level data analysis. Our approach leads to an efficient way to perform approximate conditional analysis using large-scale GWAS summary statistics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Fenotipo , Algoritmos , Bases de Datos Factuales , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo
14.
PLoS One ; 15(5): e0230815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32379818

RESUMEN

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.


Asunto(s)
Glucemia/análisis , Fumar Cigarrillos/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Ayuno/sangre , Genotipo , Adulto , Anciano , Población Negra/genética , Fumar Cigarrillos/etnología , Estudios de Cohortes , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etnología , Estudios de Factibilidad , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Riesgo , Población Blanca/genética
15.
Eur J Hum Genet ; 28(5): 646-655, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31896779

RESUMEN

Cardiometabolic traits pose a major global public health burden. Large-scale genome-wide association studies (GWAS) have identified multiple loci accounting for up to 30% of the genetic variance in complex traits such as cardiometabolic traits. However, the contribution of parent-of-origin effects (POEs) to complex traits has been largely ignored in GWAS. Family-based studies enable the assessment of POEs in genetic association analyses. We investigated POEs on a range of complex traits in 3 family-based studies. The discovery phase was carried out in large pedigrees from the Kibbutzim Family Study (n = 901 individuals) and in 872 parent-offspring trios from the Jerusalem Perinatal Study. Focusing on imprinted genomic regions, we examined parent-specific associations with 12 complex traits (i.e., body-size, blood pressure, lipids), mostly cardiometabolic risk traits. Forty five of the 11,967 SNPs initially found to have POE were evaluated for replication (p value < 1 × 10-4) in Framingham Heart Study families (max n = 8000 individuals). Three common variants yielded evidence of POE in the meta-analysis. Two variants, located on chr6 in the HLA region, showed a paternal effect on height (rs1042136: ßpaternal = -0.023, p value = 1.5 × 10-8 and rs1431403: ßpaternal = -0.011, p value = 5.4 × 10-6). The corresponding maternally-derived effects were statistically nonsignificant. The variant rs9332053, located on chr13 in RCBTB2 gene, demonstrated a maternal effect on hip circumference (ßmaternal = -4.24, p value = 9.6 × 10-6; ßpaternal = 1.29, p value = 0.23). These findings provide evidence for the utility of incorporating POEs into association studies of cardiometabolic traits, especially anthropometric traits. The study highlights the benefits of using family-based data for deciphering the genetic architecture of complex traits.


Asunto(s)
Impresión Genómica , Síndrome Metabólico/genética , Tamaño Corporal/genética , Femenino , Humanos , Masculino , Herencia Materna , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564435

RESUMEN

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variación Genética , Hemoglobina Glucada/genética , Grupos de Población/genética , Medicina de Precisión , Estudios de Cohortes , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple
17.
BMJ ; 366: l4292, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31345923

RESUMEN

OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Adulto , Alelos , Diabetes Mellitus Tipo 2/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo
18.
BMC Proc ; 12(Suppl 9): 27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275881

RESUMEN

BACKGROUND: DNA methylation, an epigenetic modification, can be affected by environmental factors and thus regulate gene expression levels that can lead to alterations of certain phenotypes. Network analysis has been used successfully to discover gene sets that are expressed differently across multiple disease states and suggest possible pathways of disease progression. We applied this framework to compare DNA methylation levels before and after lipid-lowering medication and to identify modules that differ topologically between the two time points, revealing the association between lipid medication and these triglyceride-related methylation sites. METHODS: We performed quality control using beta-mixture quantile normalization on 463,995 cytosine-phosphate-guanine (CpG) sites and deleted problematic sites, resulting in 423,004 probes. We identified 14,850 probes that were nominally associated with triglycerides prior to treatment and performed weighted gene correlation network analysis (WGCNA) to construct pre- and posttreatment methylation networks of these probes. We then applied both WGCNA module preservation and generalized Hamming distance (GHD) to identify modules with topological differences between the pre- and posttreatment. For modules with structural changes between 2 time points, we performed pathway-enrichment analysis to gain further insight into the biological function of the genes from these modules. RESULTS: Six triglyceride-associated modules were identified using pretreatment methylation probes. The same 3 modules were not preserved in posttreatment data using both the module-preservation and the GHD methods. Top-enriched pathways for the 3 differentially methylated modules are sphingolipid signaling pathway, proteoglycans in cancer, and metabolic pathways (p values < 0.005). One module in particular included an enrichment of lipid-related pathways among the top results. CONCLUSIONS: The same 3 modules, which were differentially methylated between pre- and posttreatment, were identified using both WGCNA module-preservation and GHD methods. Pathway analysis revealed that triglyceride-associated modules contain groups of genes that are involved in lipid signaling and metabolism. These 3 modules may provide insight into the effect of fenofibrate on changes in triglyceride levels and these methylation sites.

19.
World Neurosurg ; 102: 696.e17-696.e20, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28286280

RESUMEN

BACKGROUND: Shunting to the cranial venous sinus represents a novel treatment strategy for hydrocephalus. To our knowledge, overdrainage as a complication after shunting to the cranial venous sinus has not previously been reported in the clinical literature. Here we report the case of a 50-year-old man who suffered from overdrainage after a ventriculosinus shunt insertion. CASE DESCRIPTION: A 50-year-old man was admitted to our hospital with recurring fever and gait difficulty 4 months after a ventriculoperitoneal shunt (VPS) insertion for primary communicating hydrocephalus. Cerebrospinal fluid cultures were positive. The previous VPS was removed, and after successful antibiotic treatment evidenced by repeated negative cerebrospinal fluid (CSF) cultures, we performed a ventriculosinus shunt operation. A postoperative computed tomography scan of the head showed an excessively contracted ventricular system, subdural hemorrhage, and effusion, indicating the occurrence of overdrainage. CONCLUSIONS: Ventriculosinus shunt surgery is a feasible and reliable option for the treatment of hydrocephalus, especially for cases of failed VPS. However, there remains a risk of overdrainage occurring postsurgery, and this should be taken into consideration in clinical practice.


Asunto(s)
Derivaciones del Líquido Cefalorraquídeo/efectos adversos , Hidrocefalia/terapia , Hematoma Subdural/etiología , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...