Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Lancet Neurol ; 23(9): 871-882, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39152028

RESUMEN

BACKGROUND: Ataxia telangiectasia is a multisystem disorder with progressive neurodegeneration. Corticosteroids can improve neurological functioning in patients with the disorder but adrenal suppression and symptom recurrence on treatment discontinuation has limited their use, prompting the development of novel steroid delivery systems. The aim of the ATTeST study was to evaluate the efficacy and safety of intra-erythrocyte delivery of dexamethasone sodium phosphate compared with placebo in children with ataxia telangiectasia. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 trial was done at 22 centres in 12 countries (Australia, Belgium, Germany, India, Israel, Italy, Norway, Poland, Spain, Tunisia, the UK, and the USA). Eligible participants were children aged 6 years or older weighing more than 15 kg who met clinical criteria for ataxia telangiectasia but who had preserved autonomous gait. Participants were randomly assigned (1:1:1) to low-dose (approximately 5-10 mg), or high-dose (approximately 14-22 mg) intra-erythrocyte dexamethasone sodium phosphate, or placebo, using an independent interactive web response system, with minimisation for sex and age (6-9 years vs ≥10 years). Intravenous intra-erythrocyte dexamethasone sodium phosphate was administered once a month for 6 months. Participants, employees of the sponsor, investigators, all raters of efficacy endpoints, and central reviewers were masked to treatment assignment and dose allocations. The primary efficacy endpoint was change in the modified International Cooperative Ataxia Rating Scale (mICARS) from baseline to month 6, assessed in the modified intention-to-treat (mITT) population, which included all randomly assigned participants who received at least one dose of study drug and had at least one post-baseline efficacy assessment. This trial is registered with Clinicaltrials.gov (NCT02770807) and is complete. FINDINGS: Between March 2, 2017, and May 13, 2021, 239 children were assessed for eligibility, of whom 176 were randomly assigned. One patient assigned to high-dose intra-erythrocyte dexamethasone sodium phosphate did not initiate treatment. 175 patients received at least one dose of treatment (59 patients received the low dose and 57 received the high dose of intra-erythrocyte dexamethasone sodium phosphate, and 59 received placebo). The mITT population comprised 164 participants (56 children in the low-dose group, 54 children in the high-dose group, and 54 in the placebo group). Compared with the placebo group, no differences were identified with regard to change in mICARS score from baseline to 6 months in the low-dose group (least squares mean difference -1·37 [95% CI -2·932 to 0·190]) or the high-dose group (-1·40 [-2·957 to 0·152]; p=0·0765). Adverse events were reported in 43 (73%) of 59 participants in the low-dose group, 47 (82%) of 57 participants in the high-dose group, and 43 (73%) of 59 participants in the placebo group. Serious adverse events were observed in six (10%) of 59 participants in the low-dose group, seven (12%) of 57 participants in the high-dose group, and seven (12%) of 59 participants in the placebo group. There were no reports of hyperglycaemia, hypertension, hirsutism, or Cushingoid appearance in any of the treatment groups, nor any treatment-related deaths. INTERPRETATION: Although there were no safety concerns, the primary efficacy endpoint was not met, possibly related to delays in treatment reducing the number of participants who received treatment as outlined in the protocol, and potentially different treatment effects according to age. Studies of intra-erythrocyte delivery of dexamethasone sodium phosphate will continue in participants aged 6-9 years, on the basis of findings from subgroup analyses from this trial. FUNDING: EryDel and Quince Therapeutics.


Asunto(s)
Ataxia Telangiectasia , Dexametasona , Humanos , Dexametasona/administración & dosificación , Dexametasona/análogos & derivados , Método Doble Ciego , Niño , Femenino , Masculino , Adolescente , Ataxia Telangiectasia/tratamiento farmacológico , Resultado del Tratamiento , Eritrocitos/efectos de los fármacos
3.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915683

RESUMEN

Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.

4.
J Autism Dev Disord ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744742

RESUMEN

PURPOSE: Major depressive disorder (MDD) disproportionately affects those living with autism spectrum disorder (ASD) and is associated with significant impairment and treatment recidivism. METHODS: We studied the use of accelerated theta burst stimulation (ATBS) for the treatment of refractory MDD in ASD (3 treatments daily x 10 days). This prospective open-label 12-week trial included 10 subjects with a mean age of 21.5 years, randomized to receive unilateral or bilateral stimulation of the dorsolateral prefrontal cortex. RESULTS: One participant dropped out of the study due to intolerability. In both treatment arms, depressive symptoms, scored on the Hamilton Depression Rating Scale scores, diminished substantially. At 12 weeks post-treatment, full remission was sustained in 5 subjects and partial remission in 3 subjects. Treatment with ATBS, regardless of the site of stimulation, was associated with a significant, substantial, and sustained improvement in depressive symptomatology via the primary outcome measure, the Hamilton Depression Rating Scale. Additional secondary measures, including self-report depression scales, fluid cognition, and sleep quality, also showed significant improvement. No serious adverse events occurred during the study. Mild transient headaches were infrequently reported, which are expected side effects of ATBS. CONCLUSION: Overall, ATBS treatment was highly effective and well-tolerated in individuals with ASD and co-occurring MDD. The findings support the need for a larger, sham-controlled randomized controlled trial to further evaluate efficacy of ATBS in this population.

5.
Neurology ; 102(2): e208050, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165345

RESUMEN

Pediatric movement disorders (PMD) neurologists care for infants, children, and adolescents with conditions that disrupt typical movement; serving as important subspecialist child neurologists in both academic and private practice settings. In contrast to adult movement disorders neurologists whose "bread and butter" is hypokinetic Parkinson disease, PMD subspecialty practice is often dominated by hyperkinetic movement disorders including tics, dystonia, chorea, tremor, and myoclonus. PMD neurology practice intersects with a variety of subspecialties, including neonatology, developmental pediatrics, rehabilitation medicine, epilepsy, child & adolescent psychiatry, psychology, orthopedics, genetics & metabolism, and neurosurgery. Over the past several decades, significant advancements in the PMD field have included operationalizing definitions for distinct movement disorders, recognizing the spectrum of clinical phenotypes, expanding research on genetic and neuroimmunologic causes of movement disorders, and advancing available treatments. Subspecialty training in PMD provides trainees with advanced clinical, diagnostic, procedural, and management skills that reflect the complexities of contemporary practice. The child neurologist who is fascinated by the intricacies of child motor development, appreciates the power of observation skills coupled with a thoughtful physical examination, and is excited by the challenge of the unknown may be well-suited to a career as a PMD specialist.


Asunto(s)
Corea , Neurología , Enfermedad de Parkinson , Adolescente , Adulto , Niño , Lactante , Humanos , Temblor , Neurólogos
6.
RSC Adv ; 14(5): 3599-3610, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38264270

RESUMEN

Breast cancer is a prevalent form of cancer worldwide, and the current standard screening method, mammography, often requires invasive biopsy procedures for further assessment. Recent research has explored microRNAs (miRNAs) in circulating blood as potential biomarkers for early breast cancer diagnosis. In this study, we employed a multi-modal spectroscopy approach, combining attenuated total reflection Fourier transform infrared (ATR-FTIR) and surface-enhanced Raman scattering (SERS) to comprehensively characterize the full-spectrum fingerprints of RNA biomarkers in the blood serum of breast cancer patients. The sensitivity of conventional FTIR and Raman spectroscopy was enhanced by ATR-FTIR and SERS through the utilization of a diamond ATR crystal and silver-coated silicon nanopillars, respectively. Moreover, a wider measurement wavelength range was achieved with the multi-modal approach than with a single spectroscopic method alone. We have shown the results on 91 clinical samples, which comprised 44 malignant and 47 benign cases. Principal component analysis (PCA) was performed on the ATR-FTIR, SERS, and multi-modal data. From the peak analysis, we gained insights into biomolecular absorption and scattering-related features, which aid in the differentiation of malignant and benign samples. Applying 32 machine learning algorithms to the PCA results, we identified key molecular fingerprints and demonstrated that the multi-modal approach outperforms individual techniques, achieving higher average validation accuracy (95.1%), blind test accuracy (91.6%), specificity (94.7%), sensitivity (95.5%), and F-score (94.8%). The support vector machine (SVM) model showed the best area under the curve (AUC) characterization value of 0.9979, indicating excellent performance. These findings highlight the potential of the multi-modal spectroscopy approach as an accurate, reliable, and rapid method for distinguishing between malignant and benign breast tumors in women. Such a label-free approach holds promise for improving early breast cancer diagnosis and patient outcomes.

7.
Neuropediatrics ; 55(1): 67-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36809795

RESUMEN

Limited data are available regarding the impact of the coronavirus disease 2019 (COVID-19) pandemic on adolescents with Tourette syndrome (TS). We sought to compare sex differences in tic severity experienced by adolescents before and during the COVID-19 pandemic. We extracted from the electronic health record and retrospectively reviewed Yale Global Tic Severity Scores (YGTSS) from adolescents (ages 13 through 17) with TS presenting to our clinic before (36 months) and during (24 months) the pandemic. A total of 373 unique adolescent patient encounters (prepandemic: 199; pandemic: 173) were identified. Compared with prepandemic, girls accounted for a significantly greater proportion of visits during the pandemic (p < 0.001). Prepandemic, tic severity did not differ between girls and boys. During the pandemic, compared with girls, boys had less clinically severe tics (p = 0.003). During the pandemic, older girls, but not boys, had less clinically severe tics (ρ =- 0.32, p = 0.003). These findings provide evidence that, regarding tic severity assessed with YGTSS, the experiences of adolescent girls and boys with TS have differed during the pandemic.


Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Adolescente , Humanos , Femenino , Masculino , Síndrome de Tourette/epidemiología , Pandemias , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
8.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503287

RESUMEN

Dystonia is common, debilitating, often medically refractory, and difficult to diagnose. The gold standard for both clinical and mouse model dystonia evaluation is subjective assessment, ideally by expert consensus. However, this subjectivity makes translational quantification of clinically-relevant dystonia metrics across species nearly impossible. Many mouse models of genetic dystonias display abnormal striatal cholinergic interneuron excitation, but few display subjectively dystonic features. Therefore, whether striatal cholinergic interneuron pathology causes dystonia remains unknown. To address these critical limitations, we first demonstrate that objectively quantifiable leg adduction variability correlates with leg dystonia severity in people. We then show that chemogenetic excitation of striatal cholinergic interneurons in mice causes comparable leg adduction variability in mice. This clinically-relevant dystonic behavior in mice does not occur with acute excitation, but rather develops after 14 days of ongoing striatal cholinergic interneuron excitation. This requirement for prolonged excitation recapitulates the clinically observed phenomena of a delay between an inciting brain injury and subsequent dystonia manifestation and demonstrates a causative link between chronic striatal cholinergic interneuron excitation and clinically-relevant dystonic behavior in mice. Therefore, these results support targeting striatal ChIs for dystonia drug development and suggests early treatment in the window following injury but prior to dystonia onset. One Sentence Summary: Chronic excitation of dorsal striatal cholinergic interneuron causes clinically-relevant dystonic phenotypes in mice.

9.
Res Sq ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162907

RESUMEN

The FMR1 gene is inactive in Fragile X syndrome (FXS), resulting in low levels of FMRP and consequent neurochemical, synaptic, and local circuit neurophysiological alterations in the fmr1 KO mouse. In FXS patients, electrophysiological studies have demonstrated a marked reduction in global alpha activity and regional increases in gamma oscillations associated with intellectual disability and sensory hypersensitivity. Since alpha activity is associated with a thalamocortical function with widely distributed modulatory effects on neocortical excitability, insight into alpha physiology may provide insight into systems-level disease mechanisms. Herein, we took a data-driven approach to clarify the temporal and spatial properties of alpha and theta activity in participants with FXS. High-resolution resting-state EEG data were collected from participants affected by FXS (n = 65) and matched controls (n = 70). We used a multivariate technique to empirically classify neural oscillatory bands based on their coherent spatiotemporal patterns. Participants with FXS demonstrated: 1) redistribution of lower-frequency boundaries indicating a "slower" dominant alpha rhythm, 2) an anteriorization of alpha frequency activity, and 3) a correlation of increased individualized alpha power measurements with auditory neurosensory dysfunction. These findings suggest an important role for alterations in thalamocortical physiology for the well-established neocortical hyper-excitability in FXS and, thus, a role for neural systems level disruption to cortical hyperexcitability that has been studied primarily at the local circuit level in animal models.

10.
J Child Neurol ; 38(5): 283-289, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37157809

RESUMEN

We aimed to compare tic- and non-tic-related impairment experienced by adolescent girls and boys (ages 13 through 17) with Tourette syndrome and associations with age. We extracted from the electronic health record child and parental responses to the mini-Child Tourette Syndrome Impairment Scale (mini-CTIM) and other questionnaire data reflective of tic- and non-tic-related impairment of adolescents with Tourette syndrome presenting to our clinic over a 12-month period. We identified a total of 132 (49 female, 83 male) unique adolescent encounters. Mini-CTIM scores did not differ significantly between genders. Tic- and non-tic-related impairment were lower in older boys, but not older girls. Obsessive-compulsive symptoms correlated with parent-reported non-tic-related impairment experienced by adolescent girls but not boys. During adolescence, tic- and non-tic-related impairments may be less likely to improve with age in girls. Future longitudinal studies are needed to confirm this finding.


Asunto(s)
Trastorno Obsesivo Compulsivo , Trastornos de Tic , Síndrome de Tourette , Humanos , Masculino , Adolescente , Femenino , Anciano , Síndrome de Tourette/complicaciones , Síndrome de Tourette/diagnóstico , Factores Sexuales , Trastorno Obsesivo Compulsivo/complicaciones , Índice de Severidad de la Enfermedad , Estudios Longitudinales , Trastornos de Tic/complicaciones
11.
Mov Disord Clin Pract ; 10(2): 316-322, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36825045

RESUMEN

Background: POLR3A pathogenic variants are associated with hypomyelination, hypodontia, hypogonadism, and movement disorders. Cases: We describe the range of movement disorders seen in six patients (four female, two male) with POLR3A variants [three novel (c.2214del, c.3775G>A, c.3905G>T) and six previously reported (c.760C>T, c.1771-7C>G, c.1909+22G>A, c.2005C>T, c.2422C>T, c.3337-11T>C)]. Patient 1 presented with a neonatal progeroid syndrome and developed parkinsonism, dystonia, ataxia, and spasticity. Patient 2 presented with infant-onset rapidly progressive chorea, and dystonia. Three patients (patients 3, 5, 6) presented predominantly with ataxia in combination with spasticity and dystonia. Patient 4 developed segmental dystonia during adolescence and ataxia in early adulthood. Four patients had vertical gaze impairment. The most common brain MRI abnormality was T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain. Conclusion: POLR3A-related disorders exhibit significant phenotypic pleomorphism. Vertical gaze dysfunction and T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain may be useful signs suggestive of this condition.

12.
Cereb Cortex ; 33(7): 3922-3933, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35972405

RESUMEN

Tourette syndrome (TS) is a childhood-onset disorder in which tics are often preceded by premonitory sensory urges. More severe urges correlate with worse tics and can render behavioral therapies less effective. The supplementary motor area (SMA) is a prefrontal region believed to influence tic performance. To determine whether cortical physiological properties correlate with urges and tics, we evaluated, in 8-12-year-old right-handed TS children (n = 17), correlations of urge and tic severity scores and compared both to cortical excitability (CE) and short- and long-interval cortical inhibition (SICI and LICI) in both left and right M1. We also modeled these M1 transcranial magnetic stimulation measures with SMA gamma-amino butyric acid (GABA) levels in TS and typically developing control children (n = 16). Urge intensity correlated strongly with tic scores. More severe urges correlated with lower CE and less LICI in both right and left M1. Unexpectedly, in right M1, lower CE and less LICI correlated with less severe tics. We found that SMA GABA modulation of right, but not left, M1 CE and LICI differed in TS. We conclude that in young children with TS, lower right M1 CE and LICI, modulated by SMA GABA, may reflect compensatory mechanisms to diminish tics in response to premonitory urges.


Asunto(s)
Corteza Motora , Tics , Síndrome de Tourette , Humanos , Niño , Preescolar , Tics/complicaciones , Síndrome de Tourette/complicaciones , Inhibición Psicológica , Ácido gamma-Aminobutírico
13.
J Child Neurol ; 37(10-11): 813-824, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36053123

RESUMEN

Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Trastornos del Movimiento , Adulto , Algoritmos , Niño , Distonía/etiología , Distonía/terapia , Trastornos Distónicos/terapia , Humanos , Trastornos del Movimiento/etiología , Resultado del Tratamiento
15.
Commun Biol ; 5(1): 442, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546357

RESUMEN

Fragile X Syndrome (FXS) is a monogenetic form of intellectual disability and autism in which well-established knockout (KO) animal models point to neuronal hyperexcitability and abnormal gamma-frequency physiology as a basis for key disorder features. Translating these findings into patients may identify tractable treatment targets. Using source modeling of resting-state electroencephalography data, we report findings in FXS, including 1) increases in localized gamma activity, 2) pervasive changes of theta/alpha activity, indicative of disrupted thalamocortical modulation coupled with elevated gamma power, 3) stepwise moderation of low and high-frequency abnormalities based on female sex, and 4) relationship of this physiology to intellectual disability and neuropsychiatric symptoms. Our observations extend findings in Fmr1-/- KO mice to patients with FXS and raise a key role for disrupted thalamocortical modulation in local hyperexcitability. This systems-level mechanism has received limited preclinical attention but has implications for understanding fundamental disease mechanisms.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Neocórtex , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Ratones Noqueados
16.
Pediatr Neurol ; 130: 14-20, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35303587

RESUMEN

BACKGROUND: Pediatricians and pediatric subspecialists worldwide have reported a marked increase in functional (conversion) disorders with tic-like behaviors during the COVID-19 pandemic. These patients often report frequent viewing of Tourette syndrome (TS) TikTok videos, suggesting disease modeling. We aimed to evaluate tic phenomenology in videos posted on TikTok. METHODS: The 100 most-viewed videos under #tourettes in TikTok were randomly assigned to two of three primary reviewers (<2 years independent practice), all pediatric neurologists specializing in movement disorders, for extraction and classification of tic phenomenology. Initial disagreements were solved by consensus. If not resolved, one of five senior reviewers (>2 years independent pediatric movement disorder practice) served as a tiebreaker. In addition, two primary and one senior reviewer rated each video on a Likert scale from 1 = "All the tics are typical of TS" to 5 = "None of the tics are typical of TS". Median scores and Spearman correlation between primary and senior reviewers were calculated. RESULTS: Six videos without tic-like behaviors were excluded. Most videos depicted coprophenomena (coprolalia: 53.2%; copropraxia: 20.2%), often with unusual characteristics. Frequently, videos demonstrated atypical phenomenology such as very strong influence by the environment (motor: 54.3%; phonic: 54.3%), aggression (19.1%), throwing objects (22.3%), self-injurious behaviors (27.7%), and long phrases (>3 words; 45.7%). Most videos portrayed atypical, nontic behaviors (median [IQR] Likert ratings: 5 [4-5]). Primary vs. senior rater scores demonstrated moderate agreement (r = 0.46; P < 0.001). CONCLUSIONS: TS symptom portrayals on highly viewed TikTok videos are predominantly not representative or typical of TS.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Trastornos de Tic , Tics , Síndrome de Tourette , Niño , Humanos , Pandemias , Trastornos de Tic/diagnóstico , Trastornos de Tic/epidemiología , Síndrome de Tourette/epidemiología
17.
Brain Sci ; 12(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35203916

RESUMEN

Motor inhibition is an important cognitive process involved in tic suppression. As the right frontal lobe contains important inhibitory network nodes, we characterized right superior, middle, and inferior frontal gyral (RSFG, RMFG, RIFG) event-related oscillations during motor inhibition in youth with chronic tic disorders (CTD) versus controls. Fourteen children with CTD and 13 controls (10-17 years old) completed an anticipated-response stop signal task while dense-array electroencephalography was recorded. Between-group differences in spectral power changes (3-50 Hz) were explored after source localization and multiple comparisons correction. Two epochs within the stop signal task were studied: (1) preparatory phase early in the trial before motor execution/inhibition and (2) active inhibition phase after stop signal presentation. Correlation analyses between electrophysiologic data and clinical rating scales for tic, obsessive-compulsive symptoms, and inattention/hyperactivity were performed. There were no behavioral or electrophysiological differences during active stopping. During stop preparation, CTD participants showed greater event-related desynchronization (ERD) in the RSFG (γ-band), RMFG (ß, γ-bands), and RIFG (θ, α, ß, γ-bands). Higher RSFG γ-ERD correlated with lower tic severity (r = 0.66, p = 0.04). Our findings suggest RSFG γ-ERD may represent a mechanism that allows CTD patients to keep tics under control and achieve behavioral performance similar to peers.

18.
Semin Pediatr Neurol ; 38: 100896, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34183138

RESUMEN

Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Trastornos del Movimiento , Niño , Distonía/terapia , Trastornos Distónicos/terapia , Predicción , Humanos , Trastornos del Movimiento/terapia , Resultado del Tratamiento
19.
Brain Commun ; 3(2): fcab093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041478

RESUMEN

Attention-deficit/hyperactivity disorder, the most prevalent developmental disorder in childhood, is a biologically heterogenous condition characterized by impaired attention and impulse control as well as motoric hyperactivity and anomalous motor skill development. Neuropsychological testing often demonstrates impairments in motivation and reward-related decision making in attention-deficit/hyperactivity disorder, believed to indicate dysfunction of the dopamine reward pathway. Development of reliable, non-invasive, easily obtained and quantitative biomarkers correlating with the presence and severity of clinical symptoms and impaired domains of function could aid in identifying meaningful attention-deficit/hyperactivity disorder subgroups and targeting appropriate treatments. To this end, 55 (37 male) 8-12-year-old children with attention-deficit/hyperactivity disorder and 50 (32 male) age-matched, typically-developing controls were enrolled in a transcranial magnetic stimulation protocol-used previously to quantify cortical disinhibition in both attention-deficit/hyperactivity disorder and Parkinson's Disease-with a child-friendly reward motivation task. The primary outcomes were reward task-induced changes in short interval cortical inhibition and up-modulation of motor evoked potential amplitudes, evaluated using mixed model, repeated measure regression. Our results show that both reward cues and reward receipt reduce short-interval cortical inhibition, and that baseline differences by diagnosis (less inhibition in attention-deficit/hyperactivity disorder) were no longer present when reward was cued or received. Similarly, both reward cues and reward receipt up-modulated motor evoked potential amplitudes, but, differentiating the two groups, this Task-Related-Up-Modulation was decreased in children with attention-deficit/hyperactivity disorder. Furthermore, more severe hyperactive/impulsive symptoms correlated significantly with less up-modulation with success in obtaining reward. These results suggest that in children with attention-deficit/hyperactivity disorder, short interval cortical inhibition may reflect baseline deficiencies as well as processes that normalize performance under rewarded conditions. Task-Related-Up-Modulation may reflect general hypo-responsiveness in attention-deficit/hyperactivity disorder to both reward cue and, especially in more hyperactive/impulsive children, to successful reward receipt. These findings support transcranial magnetic stimulation evoked cortical inhibition and task-induced excitability as biomarkers of clinically relevant domains of dysfunction in childhood attention-deficit/hyperactivity disorder.

20.
Exp Brain Res ; 239(3): 955-965, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33462641

RESUMEN

Tics are unique from most movement disorders, in that they are partially suppressible. As part of the inhibitory motor network, the pre-supplementary motor area is engaged in motor control and may be involved in tic physiology. We used dual-site transcranial magnetic stimulation to assess inhibitory connectivity between right pre-supplementary motor area and left primary motor cortex, which has previously been demonstrated in healthy adults. We also used diffusion tensor imaging to investigate white matter connectivity in children with chronic tics. Twelve children with chronic tic disorder and fourteen typically developing controls underwent MRI with diffusion tensor imaging indices analysis followed by single and paired-pulse transcranial magnetic stimulation with conditioning pulse over the right pre-supplementary motor area followed by left motor cortex test pulse. Neurophysiologic and imaging data relationships to measures of tic severity and suppressibility were also evaluated in tic patients. Pre-supplementary motor area-mediated inhibition of left motor cortex was present in healthy control children but not in chronic tic disorder participants. Less inhibition correlated with worse tic suppressibility (ρ = - 0.73, p = 0.047). Imaging analysis showed increased fractional anisotropy in the right superior longitudinal fasciculus, corpus callosum, corona radiata and posterior limb of the internal capsule (p < 0.05) in tic participants, which correlated with lower self-reported tic suppressibility (ρ = - 0.70, p = 0.05). Physiologic data revealed impaired frontal-mediated motor cortex inhibition in chronic tic participants, and imaging analysis showed abnormalities in motor pathways. Collectively, the neurophysiologic and neuroanatomic data correlate with tic suppressibility, supporting the relevancy to tic pathophysiology.


Asunto(s)
Corteza Motora , Trastornos de Tic , Sustancia Blanca , Niño , Imagen de Difusión Tensora , Humanos , Inhibición Psicológica , Corteza Motora/diagnóstico por imagen , Trastornos de Tic/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA