Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Explor Res Clin Soc Pharm ; 15: 100482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157069

RESUMEN

Background: While suboptimal medication adherence remains an obstacle to the management of hypertension and diabetes in China, few studies have investigated associated factors with medication adherence on different dimensions simultaneously. Objective: To systematically examine associated patient, family, and community factors with suboptimal medication adherence among people with hypertension and/or type 2 diabetes in China. Methods: The study stratified a random sample of 622 adults aged 45 years or older with hypertension and/or type 2 diabetes from three southeast cities in China in 2019. Trained interviewers used the Morisky Green Levine Medication Adherence Scale, Self-Efficacy to Manage Chronic Disease (SEMCD) Scale, and the Family Adaptability, Partnership, Growth, Affection, and Resolve (APGAR) Scale to assess medication adherence, self-efficacy, and family function, respectively. Participants also reported their perceived satisfaction with community health services (quantity, quality, affordability, and overall acceptance). The study used the multivariable logistic regression to assess the association of patient, family, and community factors with suboptimal medication adherence. Results: Among the participants, 42.9% reported suboptimal medication adherence. In the multivariable logistic regression model, male participants (odds ratio [OR] = 0.55, p = 0.001) had higher medication adherence compared to females. Having a self-efficacy score that was lower than or equal to the sample mean was significantly associated with lower adherence (OR = 1.44, p = 0.039). Participants unsatisfied with the affordability of community health services and medicine had lower adherence (OR = 2.18, p = 0.028) than those neutral or satisfied. There were no significant associations between family function and medication adherence. Conclusions: Sex, self-efficacy, and perceived affordability of community health services were important factors associated with medication adherence. Healthcare professionals are recommended to consider multiple factors and leverage services and resources in community health centers when promoting medication adherence.

2.
J Anim Sci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158070

RESUMEN

Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 µg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.

3.
Ecotoxicol Environ Saf ; 284: 116877, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142118

RESUMEN

Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.

4.
Biomol Biomed ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39145615

RESUMEN

Ovarian clear cell carcinoma (OCCC) is a subtype of ovarian cancer with a poor prognosis that often shows resistance to chemotherapy. This study retrospectively analyzed 247 patients with OCCC who were admitted to the Cancer Hospital of the Chinese Academy of Medical Sciences (CAMS) between August 2007 and August 2023. Univariate and multivariate Cox regression analyses were used to identify clinicopathological factors associated with OCCC, and a nomogram prediction model was developed to predict OCCC patient survival outcomes. Kaplan‒Meier survival analysis was used to compare survival outcomes among patients with recurrent disease. Compared with systemic therapy, secondary debulking surgery significantly improved the postrecurrence survival (PRS) rate (P = 0.006). Subgroup analysis revealed that the survival benefit was more pronounced in patients with recurrence and satisfactory tumor shrinkage (PPRS = 0.01, PPFS2 = 0.047). The multivariate analysis revealed that positive preoperative ascites, incomplete remission following initial treatment, and undergoing more than six cycles of postoperative chemotherapy were independent prognostic factors affecting overall survival (OS). Additionally, patients with a positive PD-L1 test who received immunotherapy did not experience relapse during the follow-up period. In conclusion, the secondary clearance procedure offers significant benefits for patients with recurrent OCCC, and patients may experience a survival benefit from supplemental immune or targeted therapy at the end of chemotherapy. The development of a personalized treatment plan can help achieve precise treatment, improve prognosis, and enhance patients' quality of life.

5.
Mater Today Bio ; 27: 101159, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149409

RESUMEN

Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.

6.
Clin Chim Acta ; 564: 119901, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134218

RESUMEN

BACKGROUND: Platelet contains growth factors that enhance tissue repair mechanisms, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF-AA and -AB), and transforming growth factor (TGF)-ß. Autologous platelet-rich plasma (PRP) has been shown to significantly improve the treatment of tendon injuries compared with hyaluronic acid and placebo. The topic of agreement between platelet concentrations and growth factors has been covered in some previous studies, but growth factor levels did not correlate well with platelet concentrations. METHOD: In this study, autologous PRP was prepared by concentrating platelets through a J6-MI centrifuge. The automatic hematology analyzer Sysmex XN-20 was used to analyze the platelet concentration in PRP, and the PRP growth factors were determined by ELISA, including PDGF, transforming growth factor- ß1 (TGF-ß1), and EGF. Statistical analysis was conducted on data from 107 patients who received autologous PRP using Pearson correlation analysis. RESULTS: Pearson correlation analysis revealed PDGF, TGF, and EGF had a strong positive correlation with the platelet concentration of the final PRP product (r = 0.697, p < 0.0001; r = 0.488, p < 0.0001; r = 0.572, p < 0.0001, respectively) CONCLUSIONS: There was a strong positive correlation between the concentration of platelets in the final PRP product and the levels of PDGF-AB, TGF-ß, and EGF. These results suggested straightforward and cost-effective growth factor tests can provide valuable information about platelet content in PRP.

7.
Lancet Planet Health ; 8(8): e545-e553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39122323

RESUMEN

BACKGROUND: Plant-based diets (PBDs) and planetary-health diets (PHDs) are recommended for their potential health and environmental benefits, but population-based evidence in diverse cultures is scarce. METHODS: We included 9364 adults aged 45 years and older (52·3% female, 47·7% male) from the open cohort of the China Health and Nutrition Survey. Dietary intake was assessed using 3-day 24 h dietary recalls combined with weighing methods from 1997 to 2011, and mortality was documented from 1997 to 2015. We calculated the overall PBD index (PDI), healthful PBD index (hPDI), and unhealthful PBD index (uPDI; ranges 18-90), and the PHD score (range 0-140). We also estimated the related greenhouse gas emissions, land appropriation, and total water footprint and examined their associations with mortality. FINDINGS: PBD indices were inversely related to greenhouse gas emissions, land appropriation, and total water footprint, whereas higher PHD score was related to higher environmental burdens (p<0·0001). During follow-up (mean 9·2 years), 792 (8·5%) death cases were documented. PDI (HR 1·08 [95% CI 0·88-1·32]) and hPDI (0·98 [0·80-1·21]) were not significantly associated with mortality, whereas higher uPDI was related to a higher mortality risk (1·55 [1·26-1·91]). In contrast, higher PHD score was associated with lower mortality risk (0·79 [0·63-0·99]). INTERPRETATION: The PBDs showed environmental benefits, but are not necessarily associated with lower mortality risk. The PHD, developed mainly in western populations, was related to lower mortality risk but higher environmental burdens in the Chinese population. FUNDING: Fundamental Research Funds for the Central Universities, Zhejiang University Global Partnership Fund, and National Natural Science Foundation of China.


Asunto(s)
Mortalidad , Humanos , China/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Dieta Vegetariana , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/efectos adversos , Dieta Saludable/estadística & datos numéricos
8.
Asia Pac J Ophthalmol (Phila) ; : 100090, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39128549

RESUMEN

The emergence of generative artificial intelligence (AI) has revolutionized various fields. In ophthalmology, generative AI has the potential to enhance efficiency, accuracy, personalization and innovation in clinical practice and medical research, through processing data, streamlining medical documentation, facilitating patient-doctor communication, aiding in clinical decision-making, and simulating clinical trials. This review focuses on the development and integration of generative AI models into clinical workflows and scientific research of ophthalmology. It outlines the need for development of a standard framework for comprehensive assessments, robust evidence, and exploration of the potential of multimodal capabilities and intelligent agents. Additionally, the review addresses the risks in AI model development and application in clinical service and research of ophthalmology, including data privacy, data bias, adaptation friction, over interdependence, and job replacement, based on which we summarized a risk management framework to mitigate these concerns. This review highlights the transformative potential of generative AI in enhancing patient care, improving operational efficiency in the clinical service and research in ophthalmology. It also advocates for a balanced approach to its adoption.

9.
Sci Total Environ ; 950: 175454, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134281

RESUMEN

The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.

10.
Neural Regen Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39101629

RESUMEN

Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.

11.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39115447

RESUMEN

Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.


Asunto(s)
Núcleo Celular , Dineínas , Cinesinas , Proteínas Asociadas a Microtúbulos , Microtúbulos , Proteínas del Tejido Nervioso , Neuronas , Animales , Microtúbulos/metabolismo , Neuronas/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Dineínas/metabolismo , Núcleo Celular/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Transporte Activo de Núcleo Celular , Complejo Dinactina/metabolismo , Complejo Dinactina/genética , Movimiento Celular , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Cerebelo/metabolismo , Cerebelo/citología , Sitios de Unión , Humanos
12.
J Am Coll Cardiol ; 84(9): 790-797, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39168564

RESUMEN

BACKGROUND: Olpasiran, a small interfering RNA (siRNA), blocks lipoprotein(a) (Lp(a)) production by preventing translation of apolipoprotein(a) mRNA. In phase 2, higher doses of olpasiran every 12 weeks (Q12W) reduced circulating Lp(a) by >95%. OBJECTIVES: This study sought to assess the timing of return of Lp(a) to baseline after discontinuation of olpasiran, as well as longer-term safety. METHODS: OCEAN(a)-DOSE (Olpasiran Trials of Cardiovascular Events And LipoproteiN[a] Reduction-DOSE Finding Study) was a phase 2, dose-finding trial that enrolled 281 participants with atherosclerotic cardiovascular disease and Lp(a) >150 nmol/L to 1 of 4 active doses of olpasiran vs placebo (10 mg, 75 mg, 225 mg Q12W, or an exploratory dose of 225 mg Q24W given subcutaneously). The last dose of olpasiran was administered at week 36; after week 48, there was an extended off-treatment follow-up period for a minimum of 24 weeks. RESULTS: A total of 276 (98.2%) participants entered the off-treatment follow-up period. The median study exposure (treatment combined with off-treatment phases) was 86 weeks (Q1-Q3: 79-99 weeks). For the 75 mg Q12W dose, the off-treatment placebo-adjusted mean percent change from baseline in Lp(a) was -76.2%, -53.0%, -44.0%, and -27.9% at 60, 72, 84, and 96 weeks, respectively (all P < 0.001). The respective off-treatment changes in Lp(a) for the 225 mg Q12W dose were -84.4%, -61.6%, -52.2%, and -36.4% (all P < 0.001). During the extension follow-up phase, no new safety concerns were identified. CONCLUSIONS: Olpasiran is a potent siRNA with prolonged effects on Lp(a) lowering. Participants receiving doses ≥75 mg Q12W sustained a ∼40% to 50% reduction in Lp(a) levels close to 1 year after the last dose. (Olpasiran Trials of Cardiovascular Events And LipoproteiN[a] Reduction-DOSE Finding Study [OCEAN(a)-DOSE]; NCT04270760).


Asunto(s)
Relación Dosis-Respuesta a Droga , Lipoproteína(a) , ARN Interferente Pequeño , Humanos , Lipoproteína(a)/sangre , Masculino , Femenino , Persona de Mediana Edad , ARN Interferente Pequeño/administración & dosificación , Anciano , Resultado del Tratamiento , Método Doble Ciego , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/sangre , Ácidos Dicarboxílicos , Ácidos Grasos
13.
J Biol Chem ; 300(9): 107598, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059495

RESUMEN

In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.

14.
Adv Sci (Weinh) ; : e2403732, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031635

RESUMEN

Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.

15.
Cell Prolif ; : e13696, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952035

RESUMEN

N6-methyladenosine (m6A) exerts essential roles in early embryos, especially in the maternal-to-zygotic transition stage. However, the landscape and roles of RNA m6A modification during the transition between pluripotent stem cells and 2-cell-like (2C-like) cells remain elusive. Here, we utilised ultralow-input RNA m6A immunoprecipitation to depict the dynamic picture of transcriptome-wide m6A modifications during 2C-like transitions. We found that RNA m6A modification was preferentially enriched in zygotic genome activation (ZGA) transcripts and MERVL with high expression levels in 2C-like cells. During the exit of the 2C-like state, m6A facilitated the silencing of ZGA genes and MERVL. Notably, inhibition of m6A methyltransferase METTL3 and m6A reader protein IGF2BP2 is capable of significantly delaying 2C-like state exit and expanding 2C-like cells population. Together, our study reveals the critical roles of RNA m6A modification in the transition between 2C-like and pluripotent states, facilitating the study of totipotency and cell fate decision in the future.

16.
Sci Rep ; 14(1): 15107, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956066

RESUMEN

Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Ferroptosis , Flavonoides , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Animales , Flavonoides/farmacología , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Línea Celular Tumoral , Hierro/metabolismo , alfa-Sinucleína/metabolismo , Ratas Sprague-Dawley , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo
17.
Ecotoxicol Environ Saf ; 283: 116787, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067079

RESUMEN

T-2 toxin, a mycotoxin found in foods and feeds, poses a threat to female reproductive health in both humans and animals. LncRNA CUFF.253988.1 (CUFF.253988.1), highly expressed in pigs, has an undisclosed regulatory role. This study aimed to establish a model of T-2 toxin-induced ovarian injury in sows, both in vivo and in vitro, and to explore the regulatory role and potential mechanisms of CUFF.253988.1. The results showed that feeding T-2 toxin-contaminated feed (1 mg/kg) induced ovarian follicle atresia and mitochondrial structural damage, accompanied by a significant upregulation of CUFF.253988.1 expression in the ovaries. Additionally, T-2 toxin inhibited the SIRT3/PGC1-α pathway associated with mitochondrial function. Moreover, T-2 toxin induced cell apoptosis by upregulating the expression of Cyt c, Bax, cleaved-caspase-9, and cleaved-caspase-3 proteins. In T-2 toxin-induced injury to the ovarian granulosa AVG-16 cells at concentrations of 10, 40 and 160 nM, not only were the previously mentioned effects observed, but also a decrease in mitochondrial membrane potential, ATP content, and an elevation in ROS levels. However, downregulating CUFF.253988.1 reversed T-2 toxin's inhibition of the SIRT3/PGC1-α pathway, alleviating mitochondrial dysfunction and reducing cell apoptosis. Notably, this may be attributed to the inhibition of T-2 toxin-induced enrichment of CUFF.253988.1 in mitochondria. In conclusion, CUFF.253988.1 plays a pivotal role in T-2 toxin-induced ovarian damage, operating through the inhibition of the SIRT3/PGC1-α pathway and promotion of cell apoptosis.

18.
Biomater Res ; 28: 0021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828365

RESUMEN

With the high incidence rate, distinctive implant characteristic and unique infection pattern, peri-implantitis (PI) requires a specially designed implant animal model for the researches on the pathogenesis and treatments. Previous small-animal PI models exhibit variability in implant site selection, design, and surgical procedures resulting in unnecessary tissue damage and less effectivity. Herein, a quantitative-analysis-based standardized rat model for transmucosal PI-related research was proposed. After dissecting the anatomic structures of the rat maxilla, we determined that placing the implant anterior to the molars in the rat maxilla streamlined the experimental period and enhanced animal welfare. We standardized the model by controlling the rat strain, gender, and size. The customized implant and a series of matched surgical instruments were appropriately designed. A clear, step-by-step surgical process was established. These designs ensured the success rate, stability, and replicability of the model. Each validation method confirmed the successful construction of the model. This study proposed a quantitative-analysis-based standardized transmucosal PI rat model with improved animal welfare and reliable procedures. This model could provide efficient in vivo insights to study the pathogenesis and treatments of PI and preliminary screening data for further large-animal and clinical trials.

19.
Adv Sci (Weinh) ; 11(31): e2401423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884169

RESUMEN

Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.


Asunto(s)
COVID-19 , Citocinas , Macrófagos , Nanopartículas , Humanos , Citocinas/metabolismo , Nanopartículas/química , COVID-19/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Inflamación/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Sepsis/metabolismo , Sepsis/inmunología , Pancreatitis/inmunología , Pancreatitis/metabolismo , Masculino , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Femenino , Persona de Mediana Edad , SARS-CoV-2/inmunología
20.
Adv Sci (Weinh) ; 11(31): e2402255, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885363

RESUMEN

In this study, a novel approach for the tertiary α-alkylation of ketones using alkanes with electron-deficient C─H bonds is presented, employing a synergistic catalytic system combining inexpensive copper salts with aminocatalysis. This methodology addresses the limitations of traditional alkylation methods, such as the need for strong metallic bases, regioselectivity issues, and the risk of over alkylation, by providing a high reactivity and chemoselectivity without the necessity for pre-functionalized substrates. The dual catalytic strategy enables the direct functionalization of C(sp3)─H bonds, demonstrating remarkable selectivity in the presence of conventional C(sp3)─H bonds that are adjacent to heteroatoms or π systems, which are typically susceptible to single-electron transfer processes. The findings contribute to the advancement of alkylation techniques, offering a practical and efficient route for the construction of C(sp3)─C(sp3) bonds, and paving the way for further developments in the synthesis of complex organic molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...