Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 61(8): 5353-5368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38190023

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with a long incubation period. While extensive research has led to the construction of long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) regulatory networks, which primarily derived from differential analyses between clinical AD patients and control individuals or mice, there remains a critical knowledge gap pertaining to the dynamic alterations in transcript expression profiles that occur with age, spanning from the pre-symptomatic stage to the onset of AD. In the present study, we examined the transcriptomic changes in AD model mice at three distinct stages: the unaffected (un-) stage, the pre-onset stage, and the late-onset stage, and identified 14, 57, and 99 differentially expressed mRNAs (DEmRs) in AD model mice at 3, 6, and 12 months, respectively. Among these, we pinpointed 16 mRNAs closely associated with inflammation and immunity and excavated their lncRNA-mRNA regulatory network based on a comprehensive analysis. Notably, our preliminary analysis suggested that four lncRNAs (NONMMUT102943, ENSMUST00000160309, NONMMUT083044, and NONMMUT126468), eight miRNAs (miR-34a-5p, miR-22-5p, miR-302a/b-3p, miR-340-5p, miR-376a/b-5p, and miR-487b-5p), and four mRNAs (C1qa, Cd68, Ctss, and Slc11a1) may play pivotal roles in orchestrating immune and inflammatory responses during the early stages of AD. Our study has unveiled age-related AD risk genes, and provided an analytical framework for constructing lncRNA-mRNA networks using time series data and correlation analysis. Most notably, we have successfully constructed a comprehensive regulatory ceRNA network comprising genes intricately linked to inflammatory and immune functions in AD.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Redes Reguladoras de Genes , Inflamación , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Enfermedad de Alzheimer/genética , Animales , Inflamación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Envejecimiento/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad/genética , Humanos , Ratones Transgénicos , Perfilación de la Expresión Génica , Ratones , Regulación de la Expresión Génica
2.
Neurosci Bull ; 39(2): 194-212, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35802246

RESUMEN

Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.


Asunto(s)
Depresión , MicroARNs , Accidente Cerebrovascular , Animales , Ratones , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo
3.
Aging Dis ; 12(3): 786-800, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34094642

RESUMEN

Stroke activates microglia pro-inflammatory response that not only induces the early neuronal injuries but also causes the secondary brain infarction. Yet, the underlying mechanisms for how microglia become activated in stroke are still unknown. Here, using the next-generation of RNA sequencing we find a total of 778 genes increasingly expressed in brain of stroke mice. Of these, we identified Hmgb2 as a microglia pro-inflammatory mediator by promoting the transcription of Ctss. Inhibition of either Hmgb2 or Ctss blocks microglia pro-inflammatory response and protects against brain damages and improves the neurological functions of stroke mice. This study uncovers Hmgb2 and Ctss as the major microglia inflammatory response mediators in stroke and hence warrants the promising targets for stroke therapies.

4.
Aging Cell ; 19(5): e13144, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32222058

RESUMEN

Recently, we have reported that dentate mossy cells (MCs) control memory precision via directly and functionally innervating local somatostatin (SST) inhibitory interneurons. Here, we report a discovery that dysfunction of synaptic transmission between MCs and SST cells causes memory imprecision in a mouse model of early Alzheimer's disease (AD). Single-cell RNA sequencing reveals that miR-128 that binds to a 3'UTR of STIM2 and inhibits STIM2 translation is increasingly expressed in MCs from AD mice. Silencing miR-128 or disrupting miR-128 binding to STIM2 evokes STIM2 expression, restores synaptic function, and rescues memory imprecision in AD mice. Comparable findings are achieved by directly engineering MCs with the expression of STIM2. This study unveils a key synaptic and molecular mechanism that dictates how memory maintains or losses its details and warrants a promising target for therapeutic intervention of memory decays in the early stage of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Trastornos de la Memoria/metabolismo , MicroARNs/metabolismo , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Molécula de Interacción Estromal 2/metabolismo , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Masculino , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Transmisión Sináptica
5.
Mol Neurobiol ; 56(5): 3368-3379, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30120735

RESUMEN

Loss of memory is an inevitable clinic sign in aging, but its underlying mechanisms remain unclear. Here we show that death-associated protein kinase (DAPK1) is involved in the decays of learning and memory in aging via degradation of Caytaxin, a brain-specific member of BNIP-2. DAPK1 becomes activated in the hippocampus of mice during aging. Activation of DAPK1 is closely associated with degradation of Caytaxin protein. Silencing Caytaxin by the expression of small interfering RNA (siRNA) that targets specifically to Caytaxin in the hippocampus of adult mice impairs the learning and memory. Genetic inactivation of DAPK1 by deletion of DAPK1 kinase domain prevents the degradation of Caytaxin and protects against learning and memory declines. Thus, activation of DAPK1 impairs learning and memory by degrading Caytaxin during aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Animales , Caspasa 3/metabolismo , Activación Enzimática , Silenciador del Gen , Masculino , Memoria , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...