Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 10(4): 2062-2073, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128138

RESUMEN

Migratory waterfowl vector plant seeds and other tissues, but little attention has focused on the potential of avian vectoring of plant pathogens. Extensive meadows of eelgrass (Zostera marina) in southwest Alaska support hundreds of thousands of waterfowl during fall migration and may be susceptible to plant pathogens. We recovered DNA of organisms pathogenic to eelgrass from environmental samples and in the cloacal contents of eight of nine waterfowl species that annually migrate along the Pacific coast of North America and Asia. Coupled with a signal of asymmetrical gene flow of eelgrass running counter to that expected from oceanic and coastal currents between Large Marine Ecosystems, this evidence suggests waterfowl are vectors of eelgrass pathogens.

2.
Ecology ; 99(8): 1802-1814, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29800484

RESUMEN

Climate change is affecting the health and physiology of marine organisms and altering species interactions. Ocean acidification (OA) threatens calcifying organisms such as the Pacific oyster, Crassostrea gigas. In contrast, seagrasses, such as the eelgrass Zostera marina, can benefit from the increase in available carbon for photosynthesis found at a lower seawater pH. Seagrasses can remove dissolved inorganic carbon from OA environments, creating local daytime pH refugia. Pacific oysters may improve the health of eelgrass by filtering out pathogens such as Labyrinthula zosterae (LZ), which causes eelgrass wasting disease (EWD). We examined how co-culture of eelgrass ramets and juvenile oysters affected the health and growth of eelgrass and the mass of oysters under different pCO2 exposures. In Phase I, each species was cultured alone or in co-culture at 12°C across ambient, medium, and high pCO2 conditions, (656, 1,158 and 1,606 µatm pCO2 , respectively). Under high pCO2 , eelgrass grew faster and had less severe EWD (contracted in the field prior to the experiment). Co-culture with oysters also reduced the severity of EWD. While the presence of eelgrass decreased daytime pCO2 , this reduction was not substantial enough to ameliorate the negative impact of high pCO2 on oyster mass. In Phase II, eelgrass alone or oysters and eelgrass in co-culture were held at 15°C under ambient and high pCO2 conditions, (488 and 2,013 µatm pCO2 , respectively). Half of the replicates were challenged with cultured LZ. Concentrations of defensive compounds in eelgrass (total phenolics and tannins), were altered by LZ exposure and pCO2 treatments. Greater pathogen loads and increased EWD severity were detected in LZ exposed eelgrass ramets; EWD severity was reduced at high relative to low pCO2 . Oyster presence did not influence pathogen load or EWD severity; high LZ concentrations in experimental treatments may have masked the effect of this treatment. Collectively, these results indicate that, when exposed to natural concentrations of LZ under high pCO2 conditions, eelgrass can benefit from co-culture with oysters. Further experimentation is necessary to quantify how oysters may benefit from co-culture with eelgrass, examine these interactions in the field and quantify context-dependency.


Asunto(s)
Crassostrea , Zosteraceae , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
3.
Harmful Algae ; 62: 136-147, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28118888

RESUMEN

The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8×106CFUg-1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108CFUg-1 wet weight. Additionally, up to 4100CFUmL-1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108CFUg-1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400cystsg-1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Dinoflagelados/fisiología , Estramenopilos/fisiología , Ulva/microbiología , Zosteraceae/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Herbicidas/análisis , Reguladores del Crecimiento de las Plantas/análisis , Algas Marinas/microbiología , Washingtón
4.
PLoS One ; 11(4): e0152701, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27104836

RESUMEN

Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128-0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.


Asunto(s)
Variación Genética , Zosteraceae/genética , Alaska , Repeticiones de Microsatélite/genética , Océano Pacífico
5.
Dis Aquat Organ ; 118(2): 159-68, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26912046

RESUMEN

Seagrasses are ecosystem engineers of essential marine habitat. Their populations are rapidly declining worldwide. One potential cause of seagrass population declines is wasting disease, which is caused by opportunistic pathogens in the genus Labyrinthula. While infection with these pathogens is common in seagrasses, theory suggests that disease only occurs when environmental stressors cause immunosuppression of the host. Recent evidence suggests that host factors may also contribute to disease caused by opportunistic pathogens. In order to quantify patterns of disease, identify risk factors, and investigate responses to infection, we surveyed shoot density, shoot length, epiphyte load, production of plant defenses (phenols), and wasting disease prevalence in eelgrass Zostera marina across 11 sites in the central Salish Sea (Washington state, USA), a region where both wasting disease and eelgrass declines have been documented. Wasting disease was diagnosed by the presence of necrotic lesions, and Labyrinthula cells were identified with histology. Disease prevalence among sites varied from 6 to 79%. The probability of a shoot being diseased was higher in longer shoots, in patches of higher shoot density, and in shoots with higher levels of biofouling from epiphytes. Phenolic concentration was higher in diseased leaves. We hypothesize that this results from the induction of phenols during infection. Additional research is needed to evaluate whether phenols are an adaptive defense against Labyrinthula infection. The high site-level variation in disease prevalence emphasizes the potential for wasting disease to be causing some of the observed decline in eelgrass beds.


Asunto(s)
Ecosistema , Eucariontes/fisiología , Enfermedades de las Plantas/parasitología , Zosteraceae/microbiología , Océanos y Mares , Factores de Riesgo , Washingtón
6.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880835

RESUMEN

Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Urgencias Médicas , Monitoreo del Ambiente/métodos , Moluscos/microbiología , Animales , Interacciones Huésped-Patógeno
8.
PLoS One ; 9(2): e89316, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586683

RESUMEN

Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts.


Asunto(s)
Conservación de los Recursos Naturales , ADN de Plantas , Variación Genética , Zosteraceae/genética , Genética de Población , Repeticiones de Microsatélite
9.
Dis Aquat Organ ; 108(2): 165-75, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553421

RESUMEN

Many marine pathogens are opportunists, present in the environment, but causing disease only under certain conditions such as immunosuppression due to environmental stress or host factors such as age. In the temperate eelgrass Zostera marina, the opportunistic labyrinthulomycete pathogen Labyrinthula zosterae is present in many populations and occasionally causes severe epidemics of wasting disease; however, risk factors associated with these epidemics are unknown. We conducted both field surveys and experimental manipulations to examine the effect of leaf age (inferred from leaf size) on wasting disease prevalence and severity in Z. marina across sites in the San Juan Archipelago, Washington, USA. We confirmed that lesions observed in the field were caused by active Labyrinthula infections both by identifying the etiologic agent through histology and by performing inoculations with cultures of Labyrinthula spp. isolated from observed lesions. We found that disease prevalence increased at shallower depths and with greater leaf size at all sites, and this effect was more pronounced at declining sites. Experimental inoculations with 2 strains of L. zosterae confirmed an increased susceptibility of older leaves to infection. Overall, this pattern suggests that mature beds and shallow beds of eelgrass may be especially susceptible to outbreaks of wasting disease. The study highlights the importance of considering host and environmental factors when evaluating risk of disease from opportunistic pathogens.


Asunto(s)
Eucariontes/fisiología , Enfermedades de las Plantas/microbiología , Zosteraceae/microbiología , Animales , Demografía , Océano Pacífico , Hojas de la Planta
10.
J Hered ; 103(4): 533-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22577191

RESUMEN

The seagrass Zostera marina is widely distributed in coastal regions throughout much of the northern hemisphere, forms the foundation of an important ecological habitat, and is suffering population declines. Studies in the Atlantic and Pacific oceans indicate that the degree of population genetic differentiation is location dependent. San Francisco Bay, California, USA, is a high-current, high-wind environment where rafting of seed-bearing shoots has the potential to enhance genetic connectivity among Z. marina populations. We tested Z. marina from six locations, including one annual population, within the bay to assess population differentiation and to compare levels of within-population genetic diversity. Using 7 microsatellite loci, we found significant differentiation among all populations. The annual population had significantly higher clonal diversity than the others but showed no detectible differences in heterozygosity or allelic richness. There appears to be sufficient input of genetic variation through sexual reproduction or immigration into the perennial populations to prevent significant declines in the number and frequency of alleles. In additional depth comparisons, we found differentiation among deep and shallow portions in 1 of 3 beds evaluated. Genetic drift, sweepstakes recruitment, dispersal limitation, and possibly natural selection may have combined to produce genetic differentiation over a spatial scale of 3-30 km in Z. marina. This implies that the scale of genetic differentiation may be smaller than expected for seagrasses in other locations too. We suggest that populations in close proximity may not be interchangeable for use as restoration material.


Asunto(s)
Variación Genética , Zosteraceae/genética , Ecosistema , Flujo Genético , Genética de Población , Repeticiones de Microsatélite , Océano Pacífico , San Francisco
11.
BMC Ecol ; 8: 20, 2008 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19077242

RESUMEN

BACKGROUND: Plant defense strategy is usually a result of trade-offs between growth and differentiation (i.e. Optimal Defense Theory--ODT, Growth Differentiation Balance hypothesis--GDB, Plant Apparency Theory--PAT). Interaction between the introduced green alga Caulerpa taxifolia and the endemic seagrass Posidonia oceanica in the Mediterranean Sea offers the opportunity to investigate the plausibility of these theories. We have accordingly investigated defense metabolite content and growth year-round, on the basis of an interaction gradient. RESULTS: When in competition with P. oceanica, C. taxifolia exhibits increased frond length and decreased Caulerpenyne--CYN content (major terpene compound). In contrast, the length of P. oceanica leaves decreases when in competition with C. taxifolia. However, the turnover is faster, resulting in a reduction of leaf longevity and an increase on the number of leaves produced per year. The primary production is therefore enhanced by the presence of C. taxifolia. While the overall concentration of phenolic compounds does not decline, there is an increase in some phenolic compounds (including ferulic acid and a methyl 12-acetoxyricinoleate) and the density of tannin cells. CONCLUSION: Interference between these two species determines the reaction of both, confirming that they compete for space and/or resources. C. taxifolia invests in growth rather than in chemical defense, more or less matching the assumptions of the ODT and/or PAT theories. In contrast, P. oceanica apparently invests in defense rather than growth, as predicted by the GDB hypothesis. However, on the basis of closer scrutiny of our results, the possibility that P. oceanica is successful in finding a compromise between more growth and more defense cannot be ruled out.


Asunto(s)
Alismatales/crecimiento & desarrollo , Caulerpa/crecimiento & desarrollo , Ecosistema , Alismatales/metabolismo , Caulerpa/metabolismo , Mar Mediterráneo , Fenoles/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Dinámica Poblacional , Estaciones del Año , Sesquiterpenos/metabolismo
12.
Mol Ecol ; 13(7): 1923-41, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15189214

RESUMEN

As the most widespread seagrass in temperate waters of the Northern Hemisphere, Zostera marina provides a unique opportunity to investigate the extent to which the historical legacy of the last glacial maximum (LGM18 000-10 000 years bp) is detectable in modern population genetic structure. We used sequences from the nuclear rDNA-internal transcribed spacer (ITS) and chloroplast matK-intron, and nine microsatellite loci to survey 49 populations (> 2000 individuals) from throughout the species' range. Minimal sequence variation between Pacific and Atlantic populations combined with biogeographical groupings derived from the microsatellite data, suggest that the trans-Arctic connection is currently open. The east Pacific and west Atlantic are more connected than either is to the east Atlantic. Allelic richness was almost two-fold higher in the Pacific. Populations from putative Atlantic refugia now represent the southern edges of the distribution and are not genetically diverse. Unexpectedly, the highest allelic diversity was observed in the North Sea-Wadden Sea-southwest Baltic region. Except for the Mediterranean and Black Seas, significant isolation-by-distance was found from ~150 to 5000 km. A transition from weak to strong isolation-by-distance occurred at ~150 km among northern European populations suggesting this scale as the natural limit for dispersal within the metapopulation. Links between historical and contemporary processes are discussed in terms of the projected effects of climate change on coastal marine plants. The identification of a high genetic diversity hotspot in Northern Europe provides a basis for restoration decisions.


Asunto(s)
Demografía , Variación Genética , Genética de Población , Magnoliopsida/genética , Filogenia , Secuencia de Bases , Análisis por Conglomerados , Cartilla de ADN , ADN de Cloroplastos/genética , ADN Espaciador Ribosómico/genética , Frecuencia de los Genes , Geografía , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Océanos y Mares , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...