Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(10): e0311368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39352913

RESUMEN

Beet yellows virus (BYV), one of the causal agents of virus yellows (VY) disease in sugar beet (Beta vulgaris subsp. vulgaris), induces economically important damage to the sugar production in Europe. In the absence of effective natural resistance traits, a deeper understanding of molecular reactions in plants to virus infection is required. In this study, the transcriptional modifications in a BYV susceptible sugar beet genotype following aphid-mediated inoculation on mature leaves were studied at three early infection stages [6, 24 and 72 hours post inoculation (hpi)] using RNA sequencing libraries. On average, 93% of the transcripts could be mapped to the B. vulgaris reference genome RefBeet-1.2.2. In total, 588 differentially expressed genes (DEGs) were identified across the three infection stages. Of these, 370 were up- regulated and 218 down-regulated when individually compared to mock-aphid inoculated leaf samples at the same time point, thereby eliminating the effect of aphid feeding itself. Using MapMan ontology for categorisation of sugar beet transcripts, early differential gene expression identified importance of the BIN categories "enzyme classification", "RNA biosynthesis", "cell wall organisation" and "phytohormone action". A particularly high transcriptional change was found for diverse transcription factors, cell wall regulating proteins, signalling peptides and transporter proteins. 28 DEGs being important in "nutrient uptake", "lipid metabolism", "phytohormone action", "protein homeostasis" and "solute transport", were represented at more than one infection stage. The RT-qPCR validation of thirteen selected transcripts confirmed that BYV is down-regulating chloroplast-related genes 72 hpi, putatively already paving the way for the induction of yellowing symptoms characteristic for the disease. Our study provides deeper insight into the early interaction between BYV and the economically important crop plant sugar beet and opens up the possibility of using the knowledge of identified proviral plant factors as well as plant defense-related factors for resistance breeding.


Asunto(s)
Áfidos , Beta vulgaris , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Beta vulgaris/virología , Beta vulgaris/genética , Áfidos/virología , Áfidos/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Animales , Hojas de la Planta/virología , Hojas de la Planta/genética , Provirus/genética
2.
Plant Biotechnol J ; 22(8): 2129-2141, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488845

RESUMEN

Eukaryotic translation initiation factors (eIFs) are important for mRNA translation but also pivotal for plant-virus interaction. Most of these plant-virus interactions were found between plant eIFs and the viral protein genome-linked (VPg) of potyviruses. In case of lost interaction due to mutation or deletion of eIFs, the viral translation and subsequent replication within its host is negatively affected, resulting in a recessive resistance. Here we report the identification of the Beta vulgaris Bv-eIF(iso)4E as a susceptibility factor towards the VPg-carrying beet chlorosis virus (genus Polerovirus). Using yeast two-hybrid and bimolecular fluorescence complementation assays, the physical interaction between Bv-eIF(iso)4E and the putative BChV-VPg was detected, while the VPg of the closely related beet mild yellowing virus (BMYV) was found to interact with the two isoforms Bv-eIF4E and Bv-eIF(iso)4E. These VPg-eIF interactions within the polerovirus-beet pathosystem were demonstrated to be highly specific, as single mutations within the predicted cap-binding pocket of Bv-eIF(iso)4E resulted in a loss of interaction. To investigate the suitability of eIFs as a resistance resource against beet infecting poleroviruses, B. vulgaris plants were genome edited by CRISPR/Cas9 resulting in knockouts of different eIFs. A simultaneous knockout of the identified BMYV-interaction partners Bv-eIF4E and Bv-eIF(iso)4E was not achieved, but Bv-eIF(iso)4EKO plants showed a significantly lowered BChV accumulation and decrease in infection rate from 100% to 28.86%, while no influence on BMYV accumulation was observed. Still, these observations support that eIFs are promising candidate genes for polerovirus resistance breeding in sugar beet.


Asunto(s)
Beta vulgaris , Resistencia a la Enfermedad , Beta vulgaris/virología , Beta vulgaris/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Luteoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Insects ; 14(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37504603

RESUMEN

RNA(i) interference is a gene silencing mechanism triggered by double-stranded (ds)RNA, which promises to contribute to species-specific insect pest control strategies. The first step toward the application of RNAi as an insecticide is to enable efficient gene silencing upon dsRNA oral delivery. The desert locust, Schistocerca gregaria is a devastating agricultural pest. While this species is responsive to dsRNA delivered by intra-hemocoelic injection, it is refractory to orally delivered dsRNA. In this study, we evaluated the capacity of five cell-penetrating peptides (CPPs) to bind long dsRNA and protect it from the locust midgut environment. We then selected the CPP EB1 for further in vivo studies. EB1:dsRNA complexes failed to induce RNAi by feeding. Interestingly, we observed that intra-hemocoelic injection of small-interfering (si)RNAs does not result in a silencing response, but that this response can be obtained by injecting EB1:siRNA complexes. EB1 also protected siRNAs from midgut degradation activity. However, EB1:siRNA complexes failed as well in triggering RNAi when fed. Our findings highlight the complexity of the dsRNA/siRNA-triggered RNAi in this species and emphasize the multifactorial nature of the RNAi response in insects. Our study also stresses the importance of in vivo studies when it comes to dsRNA/siRNA delivery systems.

4.
Curr Res Insect Sci ; 2: 100041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003267

RESUMEN

Since the discovery of the first microRNA (miRNA) in the nematode Caenorhabditis elegans, numerous novel miRNAs have been identified which can regulate presumably every biological process in a wide range of metazoan species. In accordance, several insect miRNAs have been identified and functionally characterized. While regulatory RNA pathways are traditionally described at an intracellular level, studies reporting on the presence and potential role of extracellular (small) sRNAs have been emerging in the last decade, mainly in mammalian systems. Interestingly, evidence in several species indicates the functional transfer of extracellular RNAs between donor and recipient cells, illustrating RNA-based intercellular communication. In insects, however, reports on extracellular small RNAs are emerging but the number of detailed studies is still very limited. Here, we demonstrate the presence of stable sRNAs in the hemolymph of the migratory locust, Locusta migratoria. Moreover, the levels of several extracellular miRNAs (ex-miRNAs) present in locust hemolymph differed significantly between young and old fifth nymphal instars. In addition, we performed a 'proof of principle' experiment which suggested that extracellularly delivered miRNA molecules are capable of affecting the locusts' development.

5.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891422

RESUMEN

Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.


Asunto(s)
Antivirales , Bombyx , Animales , Antivirales/metabolismo , Proteínas Argonautas/genética , Línea Celular , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
6.
Pestic Biochem Physiol ; 175: 104853, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33993971

RESUMEN

Lepidopteran insects are highly refractory to oral RNA interference (RNAi). Degradation, impaired cellular uptake and intracellular transport of double-stranded RNA (dsRNA) are considered the major factors responsible for the reduced RNAi efficiency in these insects. In this study, the potential of lectins to improve dsRNA delivery and RNAi efficacy was evaluated. First, a fusion protein consisting of the Galanthus nivalis agglutinin (GNA) and a dsRNA binding domain was developed, further referred to as GNA:dsRBD (GNAF). Then, its ability to increase dsRNA uptake and transfection efficiency in lepidopteran midgut cells was evaluated, as well as its ability to protect and promote the RNAi response in the beet armyworm Spodoptera exigua. Confocal microscopy analysis showed that GNAF-complexed dsRNA was internalized faster in Choristoneura fumiferana midgut CF1 cells (1 min) compared to naked dsRNA (>1 h). The faster uptake was also correlated with an increased RNAi efficiency in these CF1 cells. In vivo feeding bioassays with GNAF-complexed dsRNA led to an increased mortality in S. exigua compared to the controls. By targeting the essential gene V-ATPase A, we observed that the mortality increased to 48% in the GNAF-dsRNA treatment compared to only 8.3% and 6.6% in the control treatments with the naked dsRNA and the GNAF, respectively.


Asunto(s)
Lectinas de Unión a Manosa , ARN Bicatenario , Animales , Larva/genética , Lectinas de Plantas/genética , Interferencia de ARN , ARN Bicatenario/genética
7.
Insect Biochem Mol Biol ; 122: 103377, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302638

RESUMEN

The potential utility of RNA interference (RNAi) to control insect pests and viral infections depends largely on the target organism's ability to systemically spread the RNAi response. The efficacy of systemic RNAi varies among insects, though it has been shown to be high in the red flour beetle, Tribolium castaneum. We identified an extracellular RNAi signal that is present in the culture medium of T. castaneum (TcA) cells after treatment with long dsRNA specific for a luciferase reporter gene. Luciferase-specific siRNAs were detected in extracellular vesicles (EVs) that were purified from the culture medium of these dsRNA-treated cells. Furthermore, by measuring the silencing of luciferase expression, we showed that these siRNA-containing EVs can act as an RNAi signal for recipient TcA cells. We have therefore shown that a systemic RNAi response upon dsRNA treatment can be effectively spread through EVs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Interferencia de ARN , Tribolium/fisiología , Animales , Línea Celular , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
8.
Viruses ; 11(8)2019 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405199

RESUMEN

Double-stranded RNA (dsRNA) molecules of viral origin trigger a post-transcriptional gene-silencing mechanism called RNA interference (RNAi). Specifically, virally derived dsRNA is recognized and cleaved by the enzyme Dicer2 into short interfering RNAs (siRNAs), which further direct sequence-specific RNA silencing, ultimately silencing replication of the virus. Notably, RNAi can also be artificially triggered by the delivery of gene-specific dsRNA, thereby leading to endogenous gene silencing. This is a widely used technology that holds great potential to contribute to novel pest control strategies. In this regard, research efforts have been set to find methods to efficiently trigger RNAi in the field. In this article, we demonstrate the generation of dsRNA- and/or virus-derived siRNAs-the main RNAi effectors-in six insect species belonging to five economically important orders (Lepidoptera, Orthoptera, Hymenoptera, Coleoptera, and Diptera). In addition, we describe that the siRNA length distribution is species-dependent. Taken together, our results reveal interspecies variability in the (antiviral) RNAi mechanism in insects and show promise to contribute to future research on (viral-based) RNAi-triggering mechanisms in this class of animals.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Insectos/genética , Insectos/virología , Interferencia de ARN , ARN Bicatenario , ARN Viral , Animales , Silenciador del Gen , Especificidad de Órganos , Control de Plagas
9.
Wiley Interdiscip Rev RNA ; 10(6): e1555, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31183996

RESUMEN

Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Asunto(s)
Bombyx/virología , Culicidae/virología , Drosophila/virología , ARN Interferente Pequeño/metabolismo , Virus/genética , Virus/metabolismo , Animales
10.
Sci Rep ; 8(1): 17312, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470777

RESUMEN

While regulatory RNA pathways, such as RNAi, have commonly been described at an intracellular level, studies investigating extracellular RNA species in insects are lacking. In the present study, we demonstrate the presence of extracellular microRNAs (miRNAs) in the cell-free conditioned media of two Drosophila cell lines. More specifically, by means of quantitative real-time PCR (qRT-PCR), we analysed the presence of twelve miRNAs in extracellular vesicles (EVs) and in extracellular Argonaute-1 containing immunoprecipitates, obtained from the cell-free conditioned media of S2 and Cl.8 cell cultures. Next-generation RNA-sequencing data confirmed our qRT-PCR results and provided evidence for selective miRNA secretion in EVs. To our knowledge, this is the first time that miRNAs have been identified in the extracellular medium of cultured cells derived from insects, the most speciose group of animals.


Asunto(s)
Proteínas Argonautas/metabolismo , Medios de Cultivo Condicionados/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Animales , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA