Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235966

RESUMEN

Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.

2.
J Nanobiotechnology ; 22(1): 502, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169343

RESUMEN

Epothilone B (Epo B), a promising antitumor compound effective against various types of cancer cells in vitro. However, its poor selectivity for tumor cells and inadequate therapeutic windows significantly limit its potential clinical application. Affibody is a class of non-immunoglobulin affinity proteins with precise targeting capability to overexpressed molecular receptors on cancer cells, has been intensively investigated due to its exceptional affinity properties. In this study, we present a targeted nanoagent self-assembled from the precursor of an affibody conjugated with Epo B via a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The core-shell structure of the ZHER2:342-Epo B Affibody-Drug Conjugate Nanoagent (Z-E ADCN), with the cytotoxin Epo B encapsulated within the ZHER2:342 affibody corona, leads to significantly reduced side effects on normal organs. Moreover, the abundant presence of ZHER2:342 on the surface effectively enhances the targeting capacity and tumor accumulation of the drug. Z-E ADCN can be internalized by cancer cells via HER2 receptor-mediated endocytosis followed by Epo B release in response to high levels of ROS, resulting in excellent anticancer efficacy in HER2-positive tumor models.


Asunto(s)
Epotilonas , Receptor ErbB-2 , Proteínas Recombinantes de Fusión , Receptor ErbB-2/metabolismo , Animales , Humanos , Epotilonas/química , Epotilonas/farmacología , Epotilonas/uso terapéutico , Línea Celular Tumoral , Ratones , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
3.
Sci Bull (Beijing) ; 69(18): 2870-2880, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38942696

RESUMEN

Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable strategy to produce bio-based plastic monomer, is always conducted in a high-concentration alkaline solution (1.0 mol L-1 KOH) for high activity. However, such high concentration of alkali poses challenges including HMF degradation and high operation costs associated with product separation. Herein, we report a single-atom-ruthenium supported on Co3O4 (Ru1-Co3O4) as a catalyst that works efficiently in a low-concentration alkaline electrolyte (0.1 mol L-1 KOH), exhibiting a low potential of 1.191 V versus a reversible hydrogen electrode to achieve 10 mA cm-2 in 0.1 mol L-1 KOH, which outperforms previous catalysts. Electrochemical studies demonstrate that single-atom-Ru significantly enhances hydroxyl (OH-) adsorption with insufficient OH- supply, thus improving HMF oxidation. To showcase the potential of Ru1-Co3O4 catalyst, we demonstrate its high efficiency in a flow reactor under industrially relevant conditions. Eventually, techno-economic analysis shows that substitution of the conventional 1.0 mol L-1 KOH with 0.1 mol L-1 KOH electrolyte may significantly reduce the minimum selling price of FDCA by 21.0%. This work demonstrates an efficient catalyst design for electrooxidation of biomass working without using strong alkaline electrolyte that may contribute to more economic biomass electro-valorization.

4.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587986

RESUMEN

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Asunto(s)
Fibroínas , Péptidos , Animales , Secuencias de Aminoácidos , Fibroínas/química , Fibroínas/genética , Nanofibras/química , Péptidos/química , Seda/química , Arañas/química , Resistencia a la Tracción
5.
JACS Au ; 4(4): 1480-1488, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665676

RESUMEN

Biomolecular condensates are dynamic subcellular compartments that lack surrounding membranes and can spatiotemporally organize the cellular biochemistry of eukaryotic cells. However, such dynamic organization has not been realized in prokaryotes that naturally lack organelles, and strategies are urgently needed for dynamic biomolecular compartmentalization. Here we develop a light-switchable condensate system for on-demand dynamic organization of functional cargoes in the model prokaryotic Escherichia coli cells. The condensate system consists of two modularly designed and genetically encoded fusions that contain a condensation-enabling scaffold and a functional cargo fused to the blue light-responsive heterodimerization pair, iLID and SspB, respectively. By appropriately controlling the biogenesis of the protein fusions, the condensate system allows rapid recruitment and release of cargo proteins within seconds in response to light, and this process is also reversible and repeatable. Finally, the system is demonstrated to dynamically control the subcellular localization of a cell division inhibitor, SulA, which enables the reversible regulation of cell morphologies. Therefore, this study provides a new strategy to dynamically control cellular processes by harnessing light-controlled condensates in prokaryotic cells.

6.
Nat Commun ; 15(1): 195, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172123

RESUMEN

Soft robots capable of efficiently implementing tasks in fluid-immersed environments hold great promise for diverse applications. However, it remains challenging to achieve robotization that relies on dynamic underwater adhesion and morphing capability. Here we propose the construction of such robots with designer protein materials. Firstly, a resilin-like protein is complexed with polyoxometalate anions to form hydrogels that can rapidly switch between soft adhesive and stiff non-adhesive states in aqueous environments in response to small temperature variation. To realize remote control over dynamic adhesion and morphing, Fe3O4 nanoparticles are then integrated into the hydrogels to form soft robots with photothermal and magnetic responsiveness. These robots are demonstrated to undertake complex tasks including repairing artificial blood vessel, capturing and delivering multiple cargoes in water under cooperative control of infrared light and magnetic field. These findings pave an avenue for the creation of protein-based underwater robots with on-demand functionalities.


Asunto(s)
Sustitutos Sanguíneos , Robótica , Humanos , Fenómenos Físicos , Hidrogeles , Rayos Infrarrojos , Adherencias Tisulares , Agua
7.
Curr Opin Biotechnol ; 85: 103062, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199036

RESUMEN

Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas
8.
Biomacromolecules ; 24(4): 1774-1783, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36952229

RESUMEN

3,4-Dihydroxyphenylalanine (DOPA), a naturally occurring yet noncanonical amino acid, endows protein polymers with diverse chemical reactivities and novel functionalities. Although many efforts have been made to incorporate DOPA into proteins, the incorporation efficiency and production titer remain low and severely hinder the exploration of these peculiar proteins for biomaterial fabrication. Here, we report an efficient biosynthetic strategy to produce large amounts of DOPA-incorporated structural proteins for the fabrication of hydrogels with tunable mechanical properties. First, synthetic genes were constructed that encode repetitive resilin-like proteins (RLPs) with varying proportions of tyrosine residues and molecular weights (Mw). Decoding of these genes into RLPs incorporated with DOPA was achieved via mis-aminoacylation of DOPA by endogenous tyrosyl-tRNA synthetase (TyrRS) in recombinant Escherichia coli cells. By developing a stoichiometry-guided two-phase culture strategy, we achieved independent control of the bacterial growth and protein synthesis phases. This enabled hyperproduction of the DOPA-incorporated RLPs at gram-per-liter levels and with a high DOPA incorporation yield of 76-85%. The purified DOPA-containing RLPs were then successfully cross-linked into bulk hydrogels via facile DOPA-Fe3+ complexations. Interestingly, these hydrogels exhibited viscoelastic and self-healing properties that are highly dependent on the catechol content and Mw of the RLPs. Finally, exploration of the molecular cross-linking mechanisms revealed that higher DOPA contents of the proteins would result in the concomitant occurrence of metal coordination and oxidative covalent cross-linking. In summary, our results suggest a useful platform to generate DOPA-functionalized protein materials and provide deeper insights into the gelation systems based on DOPA chemistry.


Asunto(s)
Dihidroxifenilalanina , Hidrogeles , Dihidroxifenilalanina/química , Hidrogeles/química , Proteínas de Insectos/química , Polímeros
9.
Adv Drug Deliv Rev ; 194: 114728, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791475

RESUMEN

Vehicles derived from genetically engineered protein polymers have gained momentum in the field of biomedical engineering due to their unique designability, remarkable biocompatibility and excellent biodegradability. However, the design and production of these protein polymers with on-demand sequences and supramolecular architectures remain underexplored, particularly from a synthetic biology perspective. In this review, we summarize the state-of-the art strategies for constructing the highly repetitive genes encoding the protein polymers, and highlight the advanced approaches for metabolically engineering expression hosts towards high-level biosynthesis of the target protein polymers. Finally, we showcase the typical protein polymers utilized to fabricate delivery vehicles.


Asunto(s)
Polímeros , Biología Sintética , Humanos , Proteínas
10.
Nat Chem Biol ; 18(12): 1330-1340, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400990

RESUMEN

Protein condensates are distinct structures assembled in living cells that concentrate molecules via phase separation in a confined subcellular compartment. In the past decade, remarkable advances have been made to discover the fundamental roles of the condensates in spatiotemporal control of cellular metabolism and physiology and to reveal the molecular principles, components and driving forces that underlie their formation. Here we review the unique properties of the condensates, the promise and hurdles for harnessing them toward purposeful design and manipulation of biological functions in living cells. In particular, we highlight recent advances in mining and understanding the proteinaceous components for creating designer condensates, along with the engineering approaches to manipulate their material properties and biological functions. With these advances, a greater variety of complex organelle-like structures can be built for diverse applications, with unprecedented effects on synthetic biology.


Asunto(s)
Ingeniería Metabólica , Biología Sintética , Proteínas/química , Orgánulos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA