Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39194650

RESUMEN

Cuttlefish bones are byproducts of cuttlefish processing and are readily available in the marine food industry. In this study, calcium phosphate bioceramics were prepared from cuttlefish bones using a two-stage hydrothermal calcination process. The results indicated that all bioceramics derived from cuttlefish bones had a higher degradation capacity, better bone-like apatite formation ability, and higher degree of osteogenic differentiation than commercially available hydroxyapatite. Notably, ß-tricalcium phosphate, which had the highest degree of Ca2+ and Sr2+ dissolution among the bioceramics extracted, can significantly upregulate osteogenic markers (alkaline phosphatase, osteocalcin) and stimulate bone matrix mineralization. Thus, it is a promising bioceramic material for applications in bone regeneration.

2.
J Funct Biomater ; 14(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37504885

RESUMEN

We extracted magnesium-rich calcium phosphate bioceramics from tilapia bone using a gradient thermal treatment approach and investigated their chemical and physicochemical properties. X-ray diffraction showed that tilapia fish bone-derived hydroxyapatite (FHA) was generated through the first stage of thermal processing at 600-800 °C. Using FHA as a precursor, fish bone biphasic calcium phosphate (FBCP) was produced after the second stage of thermal processing at 900-1200 °C. The beta-tricalcium phosphate content in the FBCP increased with an increasing calcination temperature. The fact that the lattice spacing of the FHA and FBCP was smaller than that of commercial hydroxyapatite (CHA) suggests that Mg-substituted calcium phosphate was produced via the gradient thermal treatment. Both the FHA and FBCP contained considerable quantities of magnesium, with the FHA having a higher concentration. In addition, the FHA and FBCP, particularly the FBCP, degraded faster than the CHA. After one day of degradation, both the FHA and FBCP released Mg2+, with cumulative amounts of 4.38 mg/L and 0.58 mg/L, respectively. Furthermore, the FHA and FBCP demonstrated superior bone-like apatite formation; they are non-toxic and exhibit better osteoconductive activity than the CHA. In light of our findings, bioceramics originating from tilapia bone appear to be promising in biomedical applications such as fabricating tissue engineering scaffolds.

3.
Nanoscale ; 14(31): 11284-11297, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880632

RESUMEN

Management of antibiotic-resistant bacteria-induced skin infections for rapid healing remains a critical clinical challenge. Photothermal therapy, which uses mediated hyperthermia to combat such problems, has recently been recognised as a promising approach to take. In this study, bacterial cellulose-based photothermal membranes were designed and developed to combat bacterial infections and promote rapid wound healing. Polydopamine was incorporated into gold nanoparticles to produce superior dual-photothermal behaviour. The in vitro antibacterial efficacy of the prepared composite membranes against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA) could reach 99% under near-infrared (NIR) irradiation. In addition, the synthesised nanocomposite exhibited good biocompatibility in vitro as demonstrated by a cell survival ratio of >85%. The effectiveness of the composite membranes on wound healing was further investigated in a murine model of MRSA-infected wounds, focusing on the effect of photothermal temperature. According to the detailed therapeutic mechanism study undertaken, the composite membranes cause bacterial killing initially and promote the transition from the inflammatory phase to proliferation by suppressing pro-inflammatory cytokine production, promoting collagen deposition, and stimulating angiogenesis. Considering their remarkable effectiveness and facile fabrication process, it is expected that these novel materials could serve as competitive multifunctional dressings in the management of infectious wounds and accelerate the regeneration of damaged tissues related to abnormal immune responses.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanocompuestos , Infección de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Oro/farmacología , Nanopartículas del Metal/uso terapéutico , Ratones , Nanocompuestos/uso terapéutico , Staphylococcus aureus , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA