Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Int J Surg ; 110(6): 3814-3826, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935818

RESUMEN

BACKGROUND: The review highlights recent advancements and innovative uses of nerve transfer surgery in treating dysfunctions caused by central nervous system (CNS) injuries, with a particular focus on spinal cord injury (SCI), stroke, traumatic brain injury, and cerebral palsy. METHODS: A comprehensive literature search was conducted regarding nerve transfer for restoring sensorimotor functions and bladder control following injuries of spinal cord and brain, across PubMed and Web of Science from January 1920 to May 2023. Two independent reviewers undertook article selection, data extraction, and risk of bias assessment with several appraisal tools, including the Cochrane Risk of Bias Tool, the JBI Critical Appraisal Checklist, and SYRCLE's ROB tool. The study protocol has been registered and reported following PRISMA and AMSTAR guidelines. RESULTS: Nine hundred six articles were retrieved, of which 35 studies were included (20 on SCI and 15 on brain injury), with 371 participants included in the surgery group and 192 in the control group. These articles were mostly low-risk, with methodological concerns in study types, highlighting the complexity and diversity. For SCI, the strength of target muscle increased by 3.13 of Medical Research Council grade, and the residual urine volume reduced by more than 100 ml in 15 of 20 patients. For unilateral brain injury, the Fugl-Myer motor assessment (FMA) improved 15.14-26 score in upper extremity compared to 2.35-26 in the control group. The overall reduction in Modified Ashworth score was 0.76-2 compared to 0-1 in the control group. Range of motion (ROM) increased 18.4-80° in elbow, 20.4-110° in wrist and 18.8-130° in forearm, while ROM changed -4.03°-20° in elbow, -2.08°-10° in wrist, -2.26°-20° in forearm in the control group. The improvement of FMA in lower extremity was 9 score compared to the presurgery. CONCLUSION: Nerve transfer generally improves sensorimotor functions in paralyzed limbs and bladder control following CNS injury. The technique effectively creates a 'bypass' for signals and facilitates functional recovery by leveraging neural plasticity. It suggested a future of surgery, neurorehabilitation and robotic-assistants converge to improve outcomes for CNS.


Asunto(s)
Transferencia de Nervios , Traumatismos de la Médula Espinal , Humanos , Transferencia de Nervios/métodos , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Lesiones Traumáticas del Encéfalo/cirugía , Lesiones Traumáticas del Encéfalo/complicaciones , Nervios Periféricos/cirugía , Nervios Periféricos/trasplante , Parálisis Cerebral/cirugía
2.
Arch Gerontol Geriatr ; 125: 105499, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38852373

RESUMEN

OBJECTIVE: This study employed a comprehensive single-cell analysis approach to explore the role of cell apoptosis-related genes in muscle aging. METHODS: The single-cell RNA sequencing data from the GSE143704 dataset were used to identify distinct cell clusters and assess gene expression patterns related to apoptosis activation. The "limma" package was used to identify hub genes, after which we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify relevant pathways. Additionally, Gene Set Enrichment Analysis(GSEA) and Gene Set Variation Analysis (GSVA) were used to uncover relevant biological pathways. The Receiver Operating Characteristic Curve (ROC) was used to evaluate the diagnostic value of the hub genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the immune cell infiltration levels. RESULTS: Single-cell sequencing data from muscle aging patients allowed the identification of various cell types, including epithelial cells, adipocytes, and tissue-resident macrophages. By conducting a differential expression analysis that intersected active and nonactive apoptosis, as well as comparing elderly and young samples, a total of 22 hub genes were identified (p < 0.05). The 22 hub genes have discriminative ability as potential biomarkers for diagnosing muscle aging. The enrichment analysis indicated that these genes were closely associated with diverse pathways, including "response to UV-B" and "extracellular matrix organization" (p < 0.05). Furthermore, GSEA and GSVA indicated that multiple pathways emerged-for example, the "complement and coagulation cascades", "proteasome", "insulin signaling pathway", and "MAPK signaling pathway". Additionally, the analysis of immune cell infiltration revealed positive correlations between most of the hub genes and immune cells. CONCLUSION: Our study identified 22 apoptosis-related genes involved in muscle aging and indicated their potential diagnostic value. These findings offer a novel perspective on the pathogenesis of muscle aging and present potential targets for therapeutic interventions.


Asunto(s)
Envejecimiento , Apoptosis , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Apoptosis/genética , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Anciano , Perfilación de la Expresión Génica
3.
Sci Rep ; 14(1): 12862, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834711

RESUMEN

This article aims to explore the effects of parental migration on the well-being of children and how to adjust social cognitive well-being through the interrelations among family relations and social cognitive well-being indicators using structural equation modelling. Two modified social cognitive well-being models were tested in 1682 Chinese migrant workers' children to examine the pathways among social cognitive well-being and family relation characteristics. The modified models are based on the social cognitive well-being model and the characteristics of Chinese migrant workers' children. The results show that caregiver-child communication frequency, caregiver-child regulation, caregiver-child conflicts, caregiver-child trust and communication, and coactivity positively impact children's social cognitive well-being. In contrast, caregiver-child alienation negatively influences children's social cognitive factors through caregiver-child trust and communication. Additionally, this research revealed that family-related characteristics (caregiver-child regulation, caregiver-child coactivities, caregiver-child communication frequency, caregiver-child alienation, caregiver-child conflicts, and caregiver-child trust and communication) are interconnected with social cognitive well-being indicators (academic satisfaction, outcome expectations, goal progress, lifelong satisfaction, environmental support, positive affect, negative affect, and self-efficacy). This suggests that family migration and relationships with caregiver(s) can significantly affect the well-being of migrant workers' children.


Asunto(s)
Migrantes , Humanos , Migrantes/psicología , Masculino , Femenino , Niño , China , Cuidadores/psicología , Adolescente , Relaciones Familiares/psicología , Adulto , Confianza/psicología , Pueblos del Este de Asia
4.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824202

RESUMEN

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Procesamiento Postranscripcional del ARN , Clasificación del Tumor , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Multiómica
6.
Environ Sci Pollut Res Int ; 31(26): 38428-38447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805136

RESUMEN

The ecological damage caused by the accelerated urbanization process has continued to endanger the sustainable development of the Loess Plateau region, and the conflict between economic development and environmental protection has become increasingly critical. It is meaningful to explore the coupling coordination degree (CCD) between urbanization (UZ) and the ecological environment (EE) in the Loess Plateau and the mechanism of its influence to eliminate the locking of the rapid urbanization development paths in ecologically fragile regions, using panel data of 39 cities in the Loess Plateau region from 2010 to 2020. The empirical results have found that the level of UZ shows a fluctuating upward trend while the level of EE fluctuates and decreases. The synthesis CCD is at a barely coordinated level with an apparent upward trend, and the spatial characteristics are represented by "central depression," with low levels in the neighboring cities and high levels in the provincial capital cities. Regarding the driving factors, residents' living, industrial structure, and openness have a favorable impact on CCD, while enhancing the government's regulatory capacity has a negative blocking effect. These findings provide novel insights into the Loess Plateau's regional sustainable development.


Asunto(s)
Urbanización , China , Conservación de los Recursos Naturales , Desarrollo Sostenible , Ciudades , Ecología , Ecosistema , Desarrollo Económico
7.
Public Health ; 232: 68-73, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749150

RESUMEN

OBJECTIVES: There is growing evidence that differences exist between rural and urban residents in terms of health, access to care and the quality of health care received, especially in low- and middle-income countries (LMICs). To improve health equity and the performance of health systems, a diagnosis-related group (DRG) payment system has been introduced in many LMICs to reduce financial risk and improve the quality of health care. The aim of this study was to examine the impact of DRG payments on the health care received by rural residents in China, and to help policymakers identify and design implementation strategies for DRG payment systems for rural residents in LMICs. STUDY DESIGN: Health impact assessment. METHODS: This study compared the impact of DRG payments on the healthcare received by rural residents in China between the pre- and post-reform periods by applying a difference-in-difference (DID) methodology. The study population included individuals with three common conditions; namely, cerebral infarction, transient ischaemic attack (TIA), and vertebrobasilar insufficiency (VBI). Data on patient medical insurance type were assessed, and those who did not have rural insurance were excluded. RESULTS: This study included 13,088 patients. In total, 33.63% were from Guangdong (n = 4401), 38.21% were from Shandong (n = 5002), and 28.16% were from Guangxi (n = 3685). The DID results showed that the implementation of DRGs was positively associated with hospitalization expense (ß4 = 0.265, P = 0.000), treatment expense (ß4 = 0.343, P = 0.002), drug expense (ß4 = 0.607, P = 0.000), the spending of medical insurance funds (ß4 = 0.711, P = 0.000) and out-of-pocket costs (ß4 = 0.164, P = 0.000). CONCLUSIONS: The findings of this study suggest that the implementation of DRG payments increases health care costs and the financial burden on health systems and rural patients in LMICs. This is contrary to the original intention of implementing the DRG payment system.


Asunto(s)
Grupos Diagnósticos Relacionados , Población Rural , Humanos , China , Población Rural/estadística & datos numéricos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Gastos en Salud/estadística & datos numéricos , Adulto , Calidad de la Atención de Salud , Seguro de Salud/estadística & datos numéricos , Seguro de Salud/economía
8.
J Neuroeng Rehabil ; 21(1): 91, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812014

RESUMEN

BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).


Asunto(s)
Interfaces Cerebro-Computador , Imágenes en Psicoterapia , Imagen por Resonancia Magnética , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Extremidad Superior , Humanos , Masculino , Rehabilitación de Accidente Cerebrovascular/métodos , Femenino , Persona de Mediana Edad , Extremidad Superior/fisiopatología , Imágenes en Psicoterapia/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Anciano , Adulto , Imaginación/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología
9.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702954

RESUMEN

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Asunto(s)
Biomarcadores , Aprendizaje Profundo , Aprendizaje Automático , Macrófagos , Análisis de la Célula Individual , Hemorragia Subaracnoidea , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/metabolismo , Animales , Macrófagos/metabolismo , Análisis de la Célula Individual/métodos , Ratas , Biomarcadores/metabolismo , Masculino , Perfilación de la Expresión Génica , Transcriptoma , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Redes Neurales de la Computación , Simulación del Acoplamiento Molecular
10.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753978

RESUMEN

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Asunto(s)
Tejido Adiposo , Lipoproteínas HDL , Animales , Ratones , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Tejido Adiposo/metabolismo , Proteínas Recombinantes , Resveratrol/farmacología , Resveratrol/química , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hidrogeles/química , Ratones Endogámicos C57BL , Humanos , Masculino , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Sistemas de Liberación de Medicamentos , Receptores Depuradores de Clase B/metabolismo
11.
Brain Behav ; 14(5): e3504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698583

RESUMEN

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Asunto(s)
Electroacupuntura , Infarto de la Arteria Cerebral Media , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Electroacupuntura/métodos , Masculino , Ratas , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/terapia , Daño por Reperfusión/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/diagnóstico por imagen , Modelos Animales de Enfermedad , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología
12.
Front Sports Act Living ; 6: 1393988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756186

RESUMEN

Background: Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method: We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results: No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion: This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration: Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.

14.
Heliyon ; 10(10): e31439, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813158

RESUMEN

China's central state-owned enterprises (SOEs) are politically and economically significant, and executives play a crucial role in determining their performance. In a competitive business environment, the selection and competencies of central SOE executives are crucial. This study aims to identify the competencies required to operate central SOEs and develops a competency framework for their executives. Through qualitative studies (face-to-face interviews and Delphi method) and two quantitative studies, we identify four dimensions-self-development, interpersonal, positional and organizational development-comprising 12 factors and 45 competencies, and use these to construct a competency framework. The competencies identified include some previously identified, but also unique competencies that are specific to the Chinese context. The proposed framework is valuable for understanding and improving managerial practices in central SOEs, and will help in the selection and development of executives. It also provides insights for central SOEs, and for individuals considering career and competency development.

15.
Small ; : e2401429, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808805

RESUMEN

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

17.
Clin Proteomics ; 21(1): 29, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594611

RESUMEN

BACKGROUND: Adamantinomatous craniopharyngiomas (ACPs) are rare benign epithelial tumours with high recurrence and poor prognosis. Biological differences between recurrent and primary ACPs that may be associated with disease recurrence and treatment have yet to be evaluated at the proteomic level. In this study, we aimed to determine the proteomic profiles of paired recurrent and primary ACP, gain biological insight into ACP recurrence, and identify potential targets for ACP treatment. METHOD: Patients with ACP (n = 15) or Rathke's cleft cyst (RCC; n = 7) who underwent surgery at Sanbo Brain Hospital, Capital Medical University, Beijing, China and received pathological confirmation of ACP or RCC were enrolled in this study. We conducted a proteomic analysis to investigate the characteristics of primary ACP, paired recurrent ACP, and RCC. Western blotting was used to validate our proteomic results and assess the expression of key tumour-associated proteins in recurrent and primary ACPs. Flow cytometry was performed to evaluate the exhaustion of tumour-infiltrating lymphocytes (TILs) in primary and recurrent ACP tissue samples. Immunohistochemical staining for CD3 and PD-L1 was conducted to determine differences in T-cell infiltration and the expression of immunosuppressive molecules between paired primary and recurrent ACP samples. RESULTS: The bioinformatics analysis showed that proteins differentially expressed between recurrent and primary ACPs were significantly associated with extracellular matrix organisation and interleukin signalling. Cathepsin K, which was upregulated in recurrent ACP compared with that in primary ACP, may play a role in ACP recurrence. High infiltration of T cells and exhaustion of TILs were revealed by the flow cytometry analysis of ACP. CONCLUSIONS: This study provides a preliminary description of the proteomic differences between primary ACP, recurrent ACP, and RCC. Our findings serve as a resource for craniopharyngioma researchers and may ultimately expand existing knowledge of recurrent ACP and benefit clinical practice.

19.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659795

RESUMEN

Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.

20.
Int J Biol Macromol ; 268(Pt 1): 131503, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663697

RESUMEN

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.


Asunto(s)
Larva , Mariposas Nocturnas , Receptores Odorantes , Animales , Mariposas Nocturnas/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Filogenia , Quimiotaxis , Alcoholes Grasos/farmacología , Alcoholes Grasos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...