Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(12): 14626-14632, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477624

RESUMEN

As one of the interesting signaling mechanisms, the in situ growth reaction on a photoelectrode has proven its powerful potential in photoelectrochemical (PEC) bioanalysis. However, the specific interaction between the signaling species with the photoactive materials limits the general application of the signal mechanism. Herein, on the basis of an in situ growth reaction on a photoelectrode of single-atom-based photoactive material, a general PEC immunoassay was developed in a split-type mode consisting of the immunoreaction and PEC detection procedure. Specifically, a single-atom photoactive material that incorporates Fe atoms into layered Bi4O5I2 (Bi4O5I2-Fe SAs) was used as a photoelectrode for PEC detection. The sandwich immunoreaction was performed in a well of a 96-well plate using Ag nanoparticles (Ag NPs) as signal tracers. In the PEC detection procedure, the Ag+ converted from Ag NPs were transferred onto the surface of the Bi4O5I2-Fe SAs photoelectrode and thereafter AgI was generated on the Bi4O5I2-Fe SAs in situ to form a heterojunction through the reaction of Ag+ with Bi4O5I2-Fe SAs. The formation of heterojunction greatly promoted the electro-hole separation, boosting the photocurrent response. Exemplified by myoglobin (Myo) as the analyte, the immunosensor achieved a wide linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a detection limit of 3.5 × 10-12 g mL-1. This strategy provides a general PEC immunoassay for disease-related proteins, as well as extends the application scope of in situ growth reaction in PEC analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Plata , Mioglobina , Técnicas Electroquímicas/métodos , Límite de Detección
2.
Front Chem ; 10: 845617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665063

RESUMEN

A novel signal-increased photoelectrochemical (PEC) biosensor for l-cysteine (L-Cys) was proposed based on the Bi2MoO6-Bi2S3 heterostructure formed in situ on the indium-tin oxide (ITO) electrode. To fabricate the PEC biosensor, Bi2MoO6 nanoparticles were prepared by a hydrothermal method and coated on a bare ITO electrode. When L-Cys existed, Bi2S3 was formed in situ on the interface of the Bi2MoO6/ITO electrode by a chemical displacement reaction. Under the visible light irradiation, the Bi2MoO6-Bi2S3/ITO electrode exhibited evident enhancement in photocurrent response compared with the Bi2MoO6/ITO electrode, owing to the signal-increased sensing system and the excellent property of the formed Bi2MoO6-Bi2S3 heterostructure such as the widened light absorption range and efficient separation of photo-induced electron-hole pairs. Under the optimal conditions, the sensor for L-Cys detection has a linear range from 5.0 × 10-11 to 1.0 × 10-4 mol L-1 and a detection limit of 5.0 × 10-12 mol L-1. The recoveries ranging from 90.0% to 110.0% for determining L-Cys in human serum samples validated the applicability of the biosensor. This strategy not only provides a method for L-Cys detection but also broadens the application of the PEC bioanalysis based on in situ formation of photoactive materials.

3.
Talanta ; 233: 122564, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215060

RESUMEN

Photoelectrochemical (PEC) immunoassay is a burgeoning and promising bioanalytical method. However, the practical application of PEC still exist some challenges such as the inevitable damage of biomolecules caused by the PEC system and the unsatisfactory sensitivity for biomarkers with low abundance in real sample. To solve the problems, we integrated the cosensitized structure of Ag2S/ZnO nanocomposities as photoelectrode with photogenerated hole-induced chemical redox cycling amplification (CRCA) strategy to develop a split-type PEC immunosensor for cardiac troponin I (cTnI) with high sensitivity. Initially, the immunoreaction was carried out on the 96-well plates in which alkaline phosphatase (ALP) could catalyze ascorbic acid 2-phosphate (AAP) to generate the signal-reporting species ascorbic acid (AA). Subsequently, the AA participated and the tris (2-carboxyethyl) phosphine (TCEP) mediated chemical redox cycling reaction took place on the photoelectrode, thus leading to signal amplification. Under the optimized conditions, the immunosensor demonstrated a detection limit (LOD) of 3.0 × 10-15 g mL-1 with a detection range of 1.0 × 10-14 g mL-1 to 1.0 × 10-9 g mL-1 for cTnI. Impressively, the proposed method could determine the cTnI in human serum samples with high sensitivity and satisfactory accuracy. Considering the virtues of the photoelectrode and the chemical redox cycling strategy, the method would hold great potential for highly sensitive biosensing and bioanalysis.


Asunto(s)
Técnicas Biosensibles , Troponina I , Fosfatasa Alcalina/metabolismo , Técnicas Electroquímicas , Humanos , Inmunoensayo , Límite de Detección , Oxidación-Reducción
4.
Microbiology ; (12)2008.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-685955

RESUMEN

Microbial is a renewable resource which can produce polysaccharide. Its unique physiological activities and broad applications are attracting increasing attention. In this article, the source and the fermenta- tion conditions of microbial polysaccharide was reviewed, with a view to provide a scientific basis for the production of the microbial polysaccharide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...