Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 14: 1171164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180241

RESUMEN

Species belonging to the genus Rahnella are dominant members of the core gut bacteriome of Dendroctonus-bark beetles, a group of insects that includes the most destructive agents of pine forest in North and Central America, and Eurasia. From 300 isolates recovered from the gut of these beetles, 10 were selected to describe an ecotype of Rahnella contaminans. The polyphasic approach conducted with these isolates included phenotypic characteristics, fatty acid analysis, 16S rRNA gene, multilocus sequence analyses (gyrB, rpoB, infB, and atpD genes), and complete genome sequencing of two isolates, ChDrAdgB13 and JaDmexAd06, representative of the studied set. Phenotypic characterization, chemotaxonomic analysis, phylogenetic analyses of the 16S rRNA gene, and multilocus sequence analysis showed that these isolates belonged to Rahnella contaminans. The G + C content of the genome of ChDrAdgB13 (52.8%) and JaDmexAd06 (52.9%) was similar to those from other Rahnella species. The ANI between ChdrAdgB13 and JaDmexAd06 and Rahnella species including R. contaminans, varied from 84.02 to 99.18%. The phylogenomic analysis showed that both strains integrated a consistent and well-defined cluster, together with R. contaminans. A noteworthy observation is the presence of peritrichous flagella and fimbriae in the strains ChDrAdgB13 and JaDmexAd06. The in silico analysis of genes encoding the flagellar system of these strains and Rahnella species showed the presence of flag-1 primary system encoding peritrichous flagella, as well as fimbriae genes from the families type 1, α, ß and σ mainly encoding chaperone/usher fimbriae and other uncharacterized families. All this evidence indicates that isolates from the gut of Dendroctonus-bark beetles are an ecotype of R. contaminans, which is dominant and persistent in all developmental stages of these bark beetles and one of the main members of their core gut bacteriome.

2.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050301

RESUMEN

Frontal polymerization (FP) was used to prepare poly(ethylene glycol) methyl ether acrylate (PEGMA) fluorescent polymer hydrogels containing pyrenebutyl pendant groups as fluorescent probes. The polymerization procedure was carried out under solvent-free conditions, with different molar quantities of pyrenebutyl methyl ether methacrylate (PybuMA) and PEGMA, in the presence of tricaprylmethylammonium (Aliquat 336®) persulfate as a radical initiator. The obtained PEGPy hydrogels were characterized by FT-IR spectroscopy, confirming the effective incorporation of the PybuMA monomer into the polymer backbone. The thermal properties of the hydrogels were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). After immersing the hydrogels in deionized water at 25 °C and pH = 7, their swelling behavior was investigated by mass gain at different pH and temperature values. The introduction of PybuMA comonomer into the hydrogel resulted in a decreased swelling ability due to the hydrophobicity of PybuMA. The optical properties of PEGPy were determined by UV-visible absorption and fluorescence spectroscopies. Both monomer and excimer emission bands were observed at 379-397 and 486 nm, respectively, and the fluorescence spectra of the PEGPy hydrogel series were recorded in different solvents to explore the coexistence of monomer and excimer emissions.

3.
Clin Transl Oncol ; 24(10): 1833-1843, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35678948

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is a novel therapeutic approach that uses gene editing techniques and lentiviral transduction to engineer T cells so that they can effectively kill tumors. However, CAR T cell therapy still has some drawbacks: many patients who received CAR T cell therapy and achieve remission, still had tumor relapse and treatment resistance, which may be due to tumor immune escape and CAR T cell dysfunction. To overcome tumor relapse, more researches are being done to optimize CAR T cell therapy to make it more precise and personalized, including screening for more specific tumor antigens, developing novel CAR T cells, and combinatorial treatment approaches. In this review, we will discuss the mechanisms as well as the progress of research on overcoming plans.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Antígenos de Neoplasias , Humanos , Recurrencia , Linfocitos T , Microambiente Tumoral
4.
Braz. J. Pharm. Sci. (Online) ; 58: e21394, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420380

RESUMEN

Abstract Gut bacterial β-glucuronidase (GUS) can reactivate xenobiotics that exert enterohepatic circulation- triggered gastrointestinal tract toxicity. GUS inhibitors can alleviate drug-induced enteropathy and improve treatment outcomes. We evaluated the inhibitory effect of Polygonum cuspidatum Siebold & Zucc. and its major constituents against Escherichia coli GUS (EcGUS), and characterized the inhibitory mechanism of each of the components. Trans-resveratrol 4'-O-β-D-glucopyranoside (HZ-1) and (-)-epicatechin gallate (HZ-2) isolated from P. cuspidatum were identified as the key components and potent inhibitors. These two components displayed strong to moderate inhibitory effects on EcGUS, with Ki values of 9.95 and 1.95 μM, respectively. Results from molecular docking indicated that HZ-1 and HZ-2 could interact with the key residues Asp163, Ser360, Ile 363, Glu413, Glu504, and Lys 568 of EcGUS via hydrogen bonding. Our findings demonstrate the inhibitory effect of P. cuspidatum and its two components on EcGUS, which supported the further evaluation and development of P. cuspidatum and its two active components as novel candidates for alleviating drug-induced damage in the mammalian gut.

5.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207945

RESUMEN

The conformational study of dendritic platforms containing multiple ß-cyclodextrin (ßCD) units in the periphery is relevant to determine the availability of ßCD cavities for the formation of inclusion complexes in aqueous biological systems. In this work, we performed a detailed conformational analysis in D2O, via 1D and 2D NMR spectroscopy of a novel class of phosphorus dendritic compounds of the type P3N3-[O-C6H4-O-(CH2)n-ßCD]6 (where n = 3 or 4). We unambiguously demonstrated that a functionalized glucopyranose unit of at least one ßCD unit undergoes a 360° tumbling process, resulting in a deep inclusion of the spacer that binds the cyclodextrin to the phosphorus core inside the cavity, consequently limiting the availability of the inner cavities. In addition, we confirmed through NMR titrations that this tumbling phenomenon can be reversed for all ßCD host units using a high-affinity guest, namely 1-adamantanecarboxylic acid (AdCOOH). Our findings have demonstrated that it is possible to create a wide variety of multi-functional dendritic platforms.

6.
Arch Microbiol ; 199(1): 97-104, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27557842

RESUMEN

One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14T, was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14T within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14T contained summed feature 8 (C18:1 ω6c/C18:1 ω7c, 59.96 %), C16:0 (10.6 %) and summed feature 2 (C12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14T from the type strains for the related species. The genome size and DNA G+C content of FH14T were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14T (=HAMBI 3636T = LMG 29288T) as the type strain.


Asunto(s)
Endófitos/aislamiento & purificación , Phaseolus/microbiología , Rhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Alanina/metabolismo , Asparagina/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , Secuencia de Bases , ADN Bacteriano/genética , Endófitos/clasificación , Endófitos/genética , Endófitos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , México , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/clasificación , Rhizobium/genética , Rhizobium/metabolismo , Análisis de Secuencia de ADN , Suelo/química , Simbiosis
7.
Int J Syst Evol Microbiol ; 64(Pt 5): 1501-1506, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24478208

RESUMEN

Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to Rhizobium gallicum, are further studied here. Their 16S rRNA genes showed 98.5-99% similarity with Rhizobium loessense CCBAU 7190BT, R. gallicum R602spT, Rhizobium mongolense USDA 1844T and Rhizobium yanglingense CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA-DNA relatedness between strain 23C2T and the type strains of R. loessense, R. mongolense, R. gallicum and R. yanglingense ranged from 58.1 to 61.5%. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52%. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus Rhizobium for which the name Rhizobium azibense is proposed. Strain 23C2T (=CCBAU 101087T=HAMBI3541T) was designated as the type strain.


Asunto(s)
Fijación del Nitrógeno , Phaseolus/microbiología , Filogenia , Rhizobium/clasificación , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , México , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Rhizobium/metabolismo , Análisis de Secuencia de ADN , España , Túnez
8.
Braz. j. microbiol ; Braz. j. microbiol;44(4): 1231-1236, Oct.-Dec. 2013. ilus
Artículo en Inglés | LILACS | ID: lil-705263

RESUMEN

This research was carried out to examine cytopathological effects of Helicoverpa armigera Cytoplasmic polyhedrosis virus (HaCPV) on infected midgut cotton bollworm (Helicoverpa armigera) using transmission and scanning electron microscope. The symptoms on infected host larvae of the host, compared with healthy ones, were getting swollen with milky-white and fragile Histopathological examinations showed infection with HaCPV small polyhedral inclusion bodies (PIB) after 1 or 2 days which were observed in columnar cells of midgut. Virions were partially or completely occupied in a polyhedral matrix to form polyhedral inclusion bodies (PIB) at periphery of virogenic stroma. PIBs were measured 0.5 to 3.5 mm and virions about 46 nm in diameter. Microvilli of infected columnar cells were affected and degenerated immediately prior to rupture of the cell. Some infected columnar cells ruptured to release PIB into the gut lumen 3 days after infection. In addition,PIB were found in goblet cells, 5 or 6 days after infection. Infected goblet cells degenerate to such an extent that only a few of the original microvillus-like cytoplasmic projections and cell organells were left. These cytopathic effects caused in the midgut by HaCPV on cotton bollworm larvae are essentially similar to those have been reported for lepidoperan and dipteran infection by CPV.


Asunto(s)
Animales , Lepidópteros/virología , Reoviridae/crecimiento & desarrollo , Tracto Gastrointestinal/patología , Histocitoquímica , Larva/virología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
9.
Braz. j. microbiol ; Braz. j. microbiol;44(3): 945-952, July-Sept. 2013. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-699825

RESUMEN

It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.


Asunto(s)
Sistemas de Secreción Bacterianos , Proteínas Bacterianas , Medios de Cultivo/química , Factores de Virulencia/metabolismo , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/metabolismo
10.
Braz. J. Microbiol. ; 44(3): 949-952, July-Sept. 2013.
Artículo en Inglés | VETINDEX | ID: vti-304347

RESUMEN

It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.(AU)


Asunto(s)
Xanthomonas campestris , Receptores de Hormona Tiroidea , Western Blotting , Glucuronidasa , Triyodotironina
11.
Braz. j. microbiol ; Braz. j. microbiol;44(3): 949-952, July-Sept. 2013.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1469599

RESUMEN

It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.


Asunto(s)
Receptores de Hormona Tiroidea , Western Blotting , Xanthomonas campestris , Glucuronidasa , Triyodotironina
12.
Braz J Microbiol ; 44(4): 1231-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24688516

RESUMEN

This research was carried out to examine cytopathological effects of Helicoverpa armigera Cytoplasmic polyhedrosis virus (HaCPV) on infected midgut cotton bollworm (Helicoverpa armigera) using transmission and scanning electron microscope. The symptoms on infected host larvae of the host, compared with healthy ones, were getting swollen with milky-white and fragile Histopathological examinations showed infection with HaCPV small polyhedral inclusion bodies (PIB) after 1 or 2 days which were observed in columnar cells of midgut. Virions were partially or completely occupied in a polyhedral matrix to form polyhedral inclusion bodies (PIB) at periphery of virogenic stroma. PIBs were measured 0.5 to 3.5 µm and virions about 46 nm in diameter. Microvilli of infected columnar cells were affected and degenerated immediately prior to rupture of the cell. Some infected columnar cells ruptured to release PIB into the gut lumen 3 days after infection. In addition, PIB were found in goblet cells, 5 or 6 days after infection. Infected goblet cells degenerate to such an extent that only a few of the original microvillus-like cytoplasmic projections and cell organells were left. These cytopathic effects caused in the midgut by HaCPV on cotton bollworm larvae are essentially similar to those have been reported for lepidoperan and dipteran infection by CPV.


Asunto(s)
Lepidópteros/virología , Reoviridae/crecimiento & desarrollo , Animales , Tracto Gastrointestinal/patología , Histocitoquímica , Larva/virología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
13.
Braz J Microbiol ; 44(3): 945-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24516463

RESUMEN

It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Medios de Cultivo/química , Factores de Virulencia/metabolismo , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA