Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Langmuir ; 40(26): 13636-13647, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885969

RESUMEN

For the conventional type-II heterojunction photocatalyst, their photocatalytic activity is affected by the limited separation efficiency of electron-hole pairs, exquisitely designed heterojunction photocatalysts are highly prospective materials for inducing charge transfer efficiently. Typically, enhancing the separation efficiency of electron-hole pairs in photocatalysts has been a formidable challenge. Here, the hollow mesoporous TiO2 (H-TiO2), the bulk g-C3N4 (B-CN), and g-C3N4 with bamboo shape (BS-CN) are prepared by simple processes. Among them, it is surprising to find that the band structure of g-C3N4 can be regulated and controlled by adjusting its structure. The B-CN/H-TiO2/BS-CN (CNTOCN) dual-type-II heterojunction photocatalyst and B-CN/H-TiO2 (CNTO) type-II heterojunction photocatalyst are designed to improve the separation efficiency of electron-hole pairs. The superiority of CNTOCN dual-type-II heterojunction photocatalyst is demonstrated by the photocatalysis experiment, the band structure analysis, and the photoelectric characterization. The results show that CNTOCN (0.8428 h-1) has much higher photocatalytic activity than H-TiO2 (0.0812 h-1), B-CN (0.3569 h-1), and CNTO (0.5934 h-1). The improvement of photocatalytic activity is ascribed to the establishment of the dual-type-II heterojunction charge transfer mechanism. This work presents an approach to designing efficient dual-type-II heterojunction photocatalysts for the sustainable conversion of solar energy to photodegrade dyes in dyeing wastewater.

2.
Front Oncol ; 13: 1212013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869099

RESUMEN

Introduction: Although surgery is the preferred treatment for sarcomatoid hepatocellular carcinoma (SHC), the prognosis remains considerably poor due to early postoperative recurrence and metastasis. Reports on surgery after combined treatment with a tyrosine kinase inhibitor and anti-programmed cell death (PD)-1 antibody are unavailable. Case presentation: A 69-year-old male patient with SHC was admitted to our hospital for treatment of a liver tumor that was detected on ultrasonography. Abdominal computed tomography with triple-phase enhancement revealed a lesion in the right hepatic lobe that measured 86.0 mm × 75.0 mm × 71.0 mm. Biopsy revealed a pathological diagnosis of liver sarcoma or sarcomatoid carcinoma. The patient subsequently received transcatheter arterial chemo-embolization, as he did not consent to surgery. More than two months later, he received a combination of lenvatinib with camrelizumab, as computed tomography showed an increase in the lesion size (to 123.0 mm × 90.0 mm × 80.0 mm) and lateral growth posterior to the upper pole of the right kidney. Liver resection was performed after 6 months of systemic therapy; pathological examination confirmed a diagnosis of SHC and showed extensive necrosis of tumor cells. Combined treatment with lenvatinib and camrelizumab was continued for 6 months after surgery. The patient has survived for over 24 months after initial diagnosis and is currently tumor-free. Conclusion: Combined systemic therapy with a tyrosine kinase inhibitor and anti-PD-1 antibody may represent a feasible treatment strategy for improving resectability in cases of unresectable SHC. The outcomes with this combination may also be explored in cases of resectable SHC that have a high-risk of recurrence; this may improve the therapeutic effect.

3.
Ultrason Sonochem ; 100: 106574, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734167

RESUMEN

Hydrodynamic cavitation (HC) enhanced fine particle aggregation could be largely due to the generation of tiny bubbles and their role in bridging particles. However, the lack of adequate characterizations of aggregates severally limits our further understanding of the associated aggregation behaviors. In this study, the aggregation of fine diaspore particles was comparatively investigated in sodium oleate (NaOl) solutions with and without HC pretreatment through the small-angle laser scattering (SALS) technique in a shear-induced aggregation (SIA) system. Results showed that HC pretreatment caused the formation of bulk nanobubbles (BNBs), which significantly modified the particle interactions and thereby modified the size and mass fractal dimension (Df) of aggregates under different SIA conditions. Although HC pretreatment did not noticeably alter the gradual change trend of aggregate size and structure characteristics under specific variables, BNBs bridging facilitated the aggregation process towards the diffusion-limited cluster aggregation model, resulting in the formation of larger but looser aggregates. This effect was more pronounced under relatively high NaOl concentrations. Apart from BNBs, the aggregation was also affected by cavitation bubbles formed during shear cavitation, which was more significant under high stirring intensity conditions (i.e., 1800 rpm) than the low stirring intensity conditions (i.e., 600 rpm).

4.
Ultrason Sonochem ; 99: 106551, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579658

RESUMEN

Ultrasound has emerged as a promising technique for improving the mineral flotation performance. However, limited research exists regarding the influence of different ultrasound types on the flotation process. Specifically, the impact of combined ultrasound and the comparison of horn- and bath-type ultrasounds on flotation have not been fully investigated. To address this knowledge gap, a comprehensive study to explore the effects of different ultrasonic pretreatments on the flotation of flake graphite was conducted. A Box-Behnken design is employed to analyze the effects of combined ultrasound on graphite flotation. By characterizing the properties of graphite samples before and after the ultrasonic treatment, the aim is to elucidate the mechanism underlying the impact of ultrasound on graphite flotation. The experimental results indicated that the ultrasonic cavitation intensity exerted a significant influence on the graphite flotation recovery. Both horn- and bath- type ultrasounds contributed to flotation, but horn-type ultrasound demonstrated a more pronounced effect, leading to a 7% increase in flotation recovery, whereas bath-type ultrasound resulted in only a 2% increase. Furthermore, the cavitation intensity of combined ultrasound was found to be higher than that of single-frequency ultrasound in the same duration. However, the performance of graphite flotation was better with short duration combined ultrasound pretreatment, while the opposite trend was observed for a long duration ultrasound pretreatment. These findings may inform the development of more efficient and effective ultrasonic pretreatments for flotation separation processes.

5.
ACS Omega ; 8(22): 20116-20124, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305250

RESUMEN

The grafted modification TiO2@SiO2 composite was fabricated by a liquid-phase deposition method with Na2SiO3 and a grafting reaction with a silane coupling agent. First, the TiO2@SiO2 composite was prepared, and the effect of deposition rate and silica content on the morphology, particle size, dispersibility, and pigmentary property of TiO2@SiO2 composites was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and ζ-potential. The islandlike TiO2@SiO2 composite had a good particle size and printing performance compared with the dense TiO2@SiO2 composite. The presence of Si was confirmed by EDX elemental analysis and XPS, and a peak at 980 cm-1 belonging to Si-O was observed in the FTIR spectrum, confirming the presence of SiO2 anchored at TiO2 surfaces via Si-O-Ti bonds. Then, the islandlike TiO2@SiO2 composite was modified by grafting with a silane coupling agent. The effect of the silane coupling agent on the hydrophobicity and dispersibility was investigated. The peaks at 2919 and 2846 cm-1 belong to CH2 in the FTIR spectrum, and Si-C in the XPS confirmed the grafting of silane coupling agent to the TiO2@SiO2 composite. The grafted modification of the islandlike TiO2@SiO2 composite using 3-triethoxysilylpropylamine endowed it with weather durability, dispersibility, and good printing performance.

6.
ACS Appl Mater Interfaces ; 15(15): 19750-19760, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37018512

RESUMEN

Cationic modification of cotton fabric was an effective way to improve the inkjet printing performance with reactive dye ink. However, there were few research studies that focused on the effect of the cationic agent structure, especially the alkyl chain length of the quaternary ammonium salt (QAS) cationic modifier, on the K/S value, dye fixation, and diffusion of inkjet-printed cotton fabric. In our work, different alkyl chain lengths of QAS were synthesized, and the inkjet printing performance of cationic cotton fabrics treated with different QASs was investigated. Compared with untreated cotton fabric, the K/S value and dye fixation of cationic cotton fabric treated with different QASs improved by 10.7 to 69.3% and 16.9 to 27.7%, respectively. With the increase in alkyl chain length of QAS, the interaction force between anionic reactive dyes and cationic QAS gradually increased mainly due to the fact that more N-positive ions on the quaternary ammonium group were exposed under the action of steric hindrance of alkyl chain length through the XPS spectrum. The electrostatic attraction between cationic cotton and reactive dye contributed to the diffusion of reactive dye into the fiber interior and enhanced the reaction probability of nucleophilic substitution reaction between monochlorotriazine reactive dye and the hydroxyl group of cotton fabric. The antibacterial result of the inkjet-printed cotton fabric indicated that when the alkyl chain length of QAS was higher than 8, the cationic cotton fabric obtained good antibacterial property.

7.
Ultrason Sonochem ; 95: 106415, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098313

RESUMEN

This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.

8.
J Oncol ; 2023: 5957481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733671

RESUMEN

Background: Emerging evidence has shown that two common genetic polymorphisms within the pleckstrin domain-containing protein 5 (DEPDC5), rs1012068 and rs5998152, may be associated with the risk of hepatocellular carcinoma (HCC), especially in those individuals chronically infected with the hepatitis C virus (HCV) or the hepatitis B virus (HBV). However, these findings have not been consistently replicated in the literature due to limited sample sizes or different etiologies of HCC. Thus, the present systematic review and meta-analysis were performed to resolve this inconsistency. Methods: The databases PubMed, Embase, Web of Science, the China National Knowledge Infrastructure, and Scopus were searched up to December 12, 2022. Data from relevant studies were pooled, and odds ratios and 95% confidence intervals were calculated. Results: A total of 11 case-control studies encompassing 2,609 cases and 8,171 controls on rs1012068 and three encompassing 411 cases and 1,448 controls on rs5998152 were included. Results indicated that the DEPDC5 rs1012068 polymorphism did not significantly increase HCC risk in the total population (allelic model (OR = 1.32, 95% CI = 1.04-1.67, P = 0.02); the recessive model (OR = 1.42, 95% CI = 0.96-2.10, P = 0.08); the dominant model (OR = 1.43, 95% CI = 1.09-1.87, P = 0.01); the homozygous model (OR = 1.61, 95% CI = 1.01-2.57, P = 0.05); the heterozygous model (OR = 1.39, 95% CI = 1.09-1.79, P = 0.009)). Subgroup analyses based on ethnicity and etiology revealed that the rs1012068 polymorphism, under all five genetic models, was associated with increased HCC risk in Asians or in individuals with chronic HBV infection but not in individuals with chronic HCV infection. A significant association was also observed between rs5998152 and HCV-related HCC risk in Asians chronically infected with HCV under allelic, dominant, and heterozygous models. Conclusion: Our study suggests that the DEPDC5 rs1012068 polymorphism increases HCC risk, especially in Asians with chronic HBV infection, while the rs5998152 polymorphism increases HCC risk in Asians with chronic HCV infection.

9.
ACS Appl Mater Interfaces ; 14(51): 57428-57439, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36529966

RESUMEN

To explore the effect of surface charge properties of a photocatalyst on photocatalytic activity, quaternization TiO2 particles with different alkyl chain lengths (CT-X/P25) are first synthesized to boost the photocatalytic activity. The effect of a quaternary ammonium group with different alkyl chain lengths on the photocatalytic activity of CT-X/P25 is investigated. Interestingly, the introduction of a quaternary ammonium group on CT-X/P25 not only contributes to improving the photodegradation efficiency of anionic dyes due to enhancing of adsorption capacity through electrostatic attraction, but also it can improve the photodegradation efficiency of cationic dyes. Therefore, there seems to be another factor affecting the photocatalytic activity. The results of photoelectric characterization show that the photogenerated charge separation of CT-X/P25 is greatly enhanced, which is beneficial to improve the photocatalytic activity. Simultaneously, the results show that the difference in the photocatalytic activity of CT-X/P25 is mainly related to the charge intensity of -N+(CH3)2- in the quaternary amine salt. According to X-ray photoelectron spectroscopy, the charge intensity of -N+(CH3)2- in CT-X/P25 gradually increases with the increase in alkyl chain lengths, which is conducive to promoting photogenerated charge separation and improving the adsorption for anionic dyes. The photocatalytic activity has been further enhanced due to the enhancement of this synergy. In summary, the quaternary ammonium salt-modified CT-X/P25 shows an excellent synergistic effect on the process of photodegradation of anionic dyes: promoting photogenerated charge separation and adsorption.

10.
World J Clin Cases ; 10(20): 7097-7104, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-36051139

RESUMEN

BACKGROUND: Hepatic solitary fibrous tumor (SFT) is a rare neoplasm. Up to now, only 90 cases have been reported in the English language literature. This report describes a case of SFT of the liver misdiagnosed as hepatocellular carcinoma. CASE SUMMARY: A 42-year-old male had a two-year history of a gradually enlarging intrahepatic nodule. The preoperative imaging revealed a mass with a size of 2.7 cm × 2.3 cm located in the segment IV of the liver. The patient was subjected to the resection of the segment IV, such as the medial segment of the left lobe of the liver. The histological examination of the mass showed various spindled cells irregularly arranged in the stroma. The immunohistochemistry of this mass revealed a positive staining for CD34 and STAT6. The history of intracranial tumor and postoperative pathological results led to the diagnosis of SFT of the liver (SFTL) due to a metastasis from the brain. CONCLUSION: SFTL is an uncommon mesenchymal neoplasm that can be easily overlooked or misdiagnosed. The best treatment choice is the complete surgical resection of the mass. A regular follow-up after the surgery should be performed due to the poor prognosis of metastatic or recurrent SFT.

11.
Ultrason Sonochem ; 84: 105965, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35240410

RESUMEN

Fundamental research on bulk micro-nanobubbles (BMNBs) has grown rapidly due to the demand for their industrial applications and potential role in interfacial sciences. This work focuses on examining properties of such bubbles, including the number, concentration, zeta potential, and surface tension in water. For this purpose, BMNBs were generated by the hydrodynamic cavitation (HC) mechanism. Distilled water and air in the experiments were the liquid and gas phases, respectively. The characterization of bulk microbubbles (BMBs) and bulk nanobubbles (BNBs) were performed through focused beam reflectance measurement (FBRM) and nanoparticle tracking analysis (NTA) techniques, respectively. Zeta potential and surface tension of aqueous solutions were measured at different time and aeration rates. The results showed that aeration rate and preparation time had an important role in the properties of BNBs (concentration, bubble size, and surface charge) and BMBs (number, and bubble size). The instability of BMBs led to the rapid changes in the dissolved oxygen (DO) content in the water. The number of BMBs decreased when preparation time and aeration rate increased, but their size remained constant. By enhancing the preparation time and aeration rate, the concentration of BNBs improved first and then reduced. Additionally, the surface tension of an aqueous solution containing BNBs was significantly lower than that of pure water.

12.
Ultrason Sonochem ; 83: 105928, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35086021

RESUMEN

Pickering emulsions are eco-friendly, stabilized by solid particles, and have an essential role in leading industries. Although Pickering emulations have found several applications, surprisingly few investigations have attempted to explore the effectiveness of various mechanical processes for its production. To fill these gaps, the present investigation comprehensively examined the application of various Pickering emulsion preparation processes such as rotor-stator homogenization emulsification (R-SH), ultrasonic emulsification, and their combined processes by using nano-silica particles. The influences of emulsification time and intensity on emulsion droplets' distribution were analyzed as indicative factors. The kerosene/water nano-silica Pickering emulsion was utilized for all assessments. The obtained results demonstrated that the main distribution peak of the emulsion prepared by R-SH occurred where the chord length was greater than 40 µm. Micro-scale nano-silica-aggregates generated large droplets, while the fine-emulsion fraction was significantly increased after ultrasonic treatment. The experimental results showed that the emulsion prepared only by ultrasound needed substantial power to form a Pickering emulsion since the oil phase was difficult to disperse in the water phase. Finally, it was concluded that preprocessing by R-SH could form a stable and uniform emulsion speedily, which is essential for ultrasound emulsion preparation.


Asunto(s)
Dióxido de Silicio , Agua , Emulsiones
13.
Cancer Cell Int ; 21(1): 519, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600546

RESUMEN

BACKGROUND: Patient-derived organoids (PDO) have been proposed as a novel in vitro method of drug screening for different types of cancer. However, to date, extrahepatic biliary tract carcinoma (eBTC) PDOs have not yet been fully established. METHODS: We collected six samples of gallbladder carcinoma (GBC) and one sample of extrahepatic cholangiocarcinoma (eCCA) from seven patients to attempt to establish eBTC PDOs for drug screening. We successfully established five GBC and one eCCA PDOs. Histological staining was used to compare structural features between the original tissues and cancer PDOs. Whole exome sequencing (WES) was performed to analyze the genetic profiles of original tissues and cancer PDOs. Drug screening, including gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, infigratinib, and ivosidenib, was measured and verified by clinical effects in certain cases. RESULTS: Different PDOs exhibited diverse growth rates during in vitro culture. Hematoxylin and eosin staining demonstrated that the structures of most cancer PDOs retained the original structures of adenocarcinoma. Immunohistological and periodic acid-schiff staining revealed that marker expression in cancer PDOs was similar to that of the original specimens. Genetic profiles from the four original specimens, as well as paired cancer PDOs, were analyzed using whole exome sequencing. Three of the four PDOs exhibited a high degree of similarity when compared to the original specimens, except for GBC2 PDO, which only had a concordance of 74% in the proportion of single nucleotide polymorphisms in the coding sequence. In general, gemcitabine was found to be the most efficient drug for eBTC treatment, as it showed moderate or significant inhibitory impact on cancer growth. Results from drug screening were confirmed to a certain extent by three clinical cases. CONCLUSIONS: Our study successfully established a series of eBTC PDOs, which contributed to the field of eBTC PDOs. Additional enhancements should be explored to improve the growth rate of PDOs and to preserve their immune microenvironment.

14.
ACS Omega ; 6(34): 21900-21908, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497885

RESUMEN

Flotation separation, which is the most important mineral beneficiation technique, is dependent on gas dispersion (hydrodynamic conditions). Thus, many investigations have focused on the precise determination of hydrodynamic conditions such as Reynolds number of the bubbles, bubble velocity, and bubble diameter. However, few studies have examined their relationships with pressure fluctuations in a column flotation. This study introduced the differential pressure fluctuations as an actual variable that could be considered to determine the collection zone's hydrodynamic conditions in a cyclonic microbubble flotation column. In general, the outcomes indicated that superficial gas velocity had the most substantial relationship with the differential pressure fluctuations among other flotation factors (such as pump speed, superficial gas velocity, superficial water velocity, and frother dosage). Furthermore, a high coefficient of determination (R 2 > 0.77) for the equation generated to assess the relationships demonstrated that differential pressure fluctuations could be used as a promising tool to determine the hydrodynamic parameters' characteristics in the flotation columns.

15.
Langmuir ; 37(32): 9701-9710, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339198

RESUMEN

The interfacial properties of surfactant solutions are closely related to the micellization of surfactants. Temperature, salt type and concentration, pH, and other parameters affecting the micellization of surfactants have all been extensively investigated previously. However, the effect of dissolved gas on surfactant micellization and associated interfacial properties' transformations is not completely understood yet. In this study, sodium oleate (NaOl) was chosen as the research object, and the role of gas/gas nucleation in NaOl micellization was systematically investigated. The results indicated that the solution changed to be more turbid and the dissolved oxygen content increased after NaOl solutions were subjected to compression-decompression treatments. Meanwhile, the surface tension of the NaOl solution was altered, which was more pronounced when the concentration of NaOl was close to the critical micelle concentration. Given that the surface tension was a good indicator of the assembly and distribution state of the soluble monomers and insoluble micelles of NaOl, interactions between nucleated bubbles originating from the gas nucleation and NaOl molecules were unveiled through the analysis of the size distribution and zeta potential of sub-micro- and nanoscale particles in bulk solutions. Finally, possible micellization models of NaOl molecules, fully considering the role of gas/gas nucleation, were proposed under varying NaOl concentration conditions.


Asunto(s)
Micelas , Ácido Oléico , Tensión Superficial , Tensoactivos
16.
Ultrason Sonochem ; 77: 105682, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34330084

RESUMEN

Froth flotation for mineral beneficiation is one of the most important separation techniques; however, it has several challenges for processing fine and ultrafine particles. Attractive mineralization between particles and bubbles by ultrasonic standing wave (USW) is a novel and high-efficiency method that could assist fine particle flotation. Frequency is an important ultrasound parameter, whose effectiveness mechanisms on the attractive mineralization did not compressively address. This study explored the effect of the USW field with various frequencies on the fine coal flotation for filling this gap. Herein, a high-speed camera and a focused beam reflectance measurement (FBRM) were used to analyze three sub-processes of the attractive mineralization, including the microbubbles' formation, the conventional flotation bubbles (CFBs)' dispersion, and the particles' movement. It was found that the maximum flotation metallurgical responses were obtained under the highest examined USW frequency (600 kHz). However, the flotation outcomes by a low USW frequency (50 kHz) were even lower than the conventional flotation tests. Observation and theoretical calculation results revealed these results were originated from the influence of frequency on the carrier bubbles' formation and the action of the secondary acoustic force during USW-assisted flotation. These outcomes demonstrated that frequency is a key factor determining the success of attractive mineralization for fine particles' flotation.

17.
ACS Omega ; 5(23): 13813-13821, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566847

RESUMEN

In this study, experimental results of conventional flotation and carrier flotation were characterized by six commonly used flotation kinetic models. Two statistical criteria (coefficient of determination, R 2, and root mean square error, RMSE) were used for comparison of fitting performance of different models. All kinetic models tested gave good levels of goodness of fit, but the second-order model with rectangular distribution (model 6) provided the best fitting performance for the experimental data of conventional flotation and carrier flotation. On this basis, two parameters, that is, modified flotation rate constant (K m) and selectivity index (SI), were used to evaluate the difference in flotation separation selectivity between conventional flotation and carrier flotation. Comparisons of K m and SI values indicated that carrier flotation significantly improved the flotation rate constant of combustible materials and flotation separation selectivity of ultrafine coal (-74 µm). In addition, measurements of average bubble size and water recovery indicated that both the coalescence of bubbles and the drainage of liquid in the froth were promoted when coarse coal particles (contact angle >90°) were employed as the carrier to assist the flotation recovery of ultrafine particles, which in turn favored the inhibition effect of the entrainment of gangue materials in carrier flotation compared to conventional flotation.

18.
Ultrason Sonochem ; 64: 105005, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32062426

RESUMEN

In this paper, a novel flotation technique that combines nano-scale bubbles generated by hydrodynamic cavitation (HC) and carrier flotation is proposed to promote the flotation efficiency of a high-ash (43%) ultra-fine coal sample (<45 µm). We investigated the mechanism by which cavitation bubbles enhance the separation efficiency of carrier flotation using focused beam reflectance measurements, polarizing microscopy, and extended Derjaguin-Landau-Verwey-Overbeek theory. The carrier particles (polystyrene (PS)) and fine coal were pre-treated in a venturi tube and then floated in a laboratory mechanical flotation cell. The flotation results indicate that the presence of cavitation bubbles significantly improved the carrier flotation performance of high-ash ultra-fine coal. This improvement was attributed to the presence of highly hydrophobic PS, which creates additional gas nuclei in the flotation system. The nano-bubbles, which were produced by the venturi tube and adhered to the fine coal particle surfaces, were conducive to the agglomeration of fine coal particles into large aggregates. Moreover, the nano-bubbles functioned as "bridges" of interaction between the carrier particles and large aggregates of fine coal particles. This paper mainly focused on the effect of carrier (PS) and HC on high-ash fine coal. The influence of different HC intensities on carrier (PS) flotation was discussed. Two models for the interactions between the coal particles, nano-bubbles, and PS during cavitation were proposed and were proved using the E-DLVO theory.

19.
Ultrason Sonochem ; 64: 105003, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32062535

RESUMEN

The interactions of bubbles and coal particles in 600 kHz ultrasonic standing waves (USW) field has been investigated. A high-speed camera was employed to record the phenomena occurred under the USW treatment. The formation and behaviors of cavitation bubbles were analyzed. Under the driving of these cavitation bubbles, whose size is from several microns to dozens of microns, coal particles were aggregated and then attracted by large bubbles due to the acoustic radiation forces. The results of USW-assisted flotation show a significant improvement in recoveries at 600 kHz, which indicates that the interactions of bubbles and particles in the USW field are more efficient than that in the conventional gravitational field. Furthermore, the sound pressure distribution of the USW was measured and predicted by a hydrophone. The analysis of gravity and buoyancy, primary and secondary Bjerknes forces shows that bubble-laden particles can be attracted by the rising bubbles under large acoustic forces. This study highlights the potential for USW technology to achieve efficient bubble-particle interactions in flotation.

20.
Ultrason Sonochem ; 63: 104924, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31945565

RESUMEN

Gas nuclei in water are usually too small to be directly observed. They will grow into bubbles under the negative pressure, which is called cavitation (heterogeneous cavitation). In this study, the gas nuclei in the hydrophilic and hydrophobic silica particle suspension were investigated using the transient cavitation threshold measured by a high-intensity focused ultrasound (HIFU). The transient cavitation bubbles were also observed by a high-speed camera. The results showed that the nuclei only exist on the surface of hydrophobic particles. Furthermore, the aggregation experiments revealed that the aggregates were only formed in the hydrophobic silica suspension by ultrasonic standing waves (USW) at 200 kHz. This distinct difference was mainly due to the formation of gas nuclei on hydrophobic silica particles, which grew and coalesced into stable bubbles under the 200 kHz USW. The aggregation process in suspension was observed by a CCD camera. Moreover, the cavitation thresholds and acoustic radiation forces were analyzed to explain the mechanism of the acoustic aggregation. This study showed a very promising acoustic method for the selective aggregation of hydrophobic particles, which might be efficiently used in the mineral separation industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...