Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(27): e2311060, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38287739

RESUMEN

Cu-based metal-organic frameworks (MOFs) have attracted much attention for electrocatalytic CO2 reduction to high value-added chemicals, but they still suffer from low selectivity and instability. Here, an associative design strategy for the valence and coordination environment of the metal node in Cu-based MOFs is employed to regulate the CO2 electroreduction to ethylene. A novel "reduction-cleavage-recrystallization" method is developed to modulate the Cu(II)-Trimesic acid (BTC) framework to form a Cu(I)-BTC structure enriched with free carboxyl groups in the secondary coordination environment (SCE). In contrast to Cu(II)-BTC, the Cu(I)-BTC shows higher catalytic activity and better ethylene selectivity (≈2.2-fold) for CO2 electroreduction, which is further enhanced by increasing the content of free carboxyl groups, resulting in ethylene Faraday efficiency of up to 57% and the durability of the catalyst could last for 38 h without performance decline. It indicates that the synergistic effect between Cu(I)-O coordinated structure and free carboxyl groups considerably enhances the dimerization of *CO intermediates and hinders the hydrogenation of *CO intermediates in these competitive pathways. This work unravels the strong dependence of CO2 electroreduction on the Cu valence state and coordination environment in MOFs and provides a platform for designing highly selective electrocatalytic CO2 reduction catalysts.

2.
RSC Adv ; 12(50): 32374-32382, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36425676

RESUMEN

Proton exchange membrane fuel cells (PEMFCs) are regarded as one of the promising new carbon mitigation strategies to realize carbon neutrality. However, efficient and robust electrocatalysts are vital for the commercialization of PEMFCs. Herein, three commercial Pt/C electrocatalysts were investigated including a carbon support and Pt nanoparticles (NPs) to identify their merits and disadvantages, which will help end users quickly select catalysts with excellent performances among the many brands of domestic and foreign catalysts to further better study and better utilize them. Subsequently, they were optimized for real automotive application for about 1800 h, and then the variations in the electrocatalysts on the MEA were analysed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The mean Pt particle size of the catalysts after operating for 1800 h (cathode, 9.9 ± 3.2 nm) was nearly 4-fold that before use (2.5 ± 0.6 nm), greatly reducing the exposure of metal sites, which was due to the violent three-phase interfacial reaction (ORR) occurring at the cathode side. Also, this assertion was supported by the negative shift in the Pt 4f peaks in the XPS spectra. Moreover, to determine the coalescent evolution of the Pt particles, an in situ TEM experiment was performed. This allowed us to perform fundamental Pt NP degradation studies on the carbon support, which can result in an improvement in the sustainability of catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...