Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 97: 103253, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38968907

RESUMEN

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.

2.
Artif Intell Med ; 154: 102930, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39047631

RESUMEN

In the realm of pulmonary tracheal segmentation, the scarcity of annotated data stands as a prevalent pain point in most medical segmentation endeavors. Concurrently, most Deep Learning (DL) methodologies employed in this domain invariably grapple with other dual challenges: the inherent opacity of 'black box' models and the ongoing pursuit of performance enhancement. In response to these intertwined challenges, the core concept of our Human-Computer Interaction (HCI) based learning models (RS_UNet, LC_UNet, UUNet and WD_UNet) hinge on the versatile combination of diverse query strategies and an array of deep learning models. We train four HCI models based on the initial training dataset and sequentially repeat the following steps 1-4: (1) Query Strategy: Our proposed HCI models selects those samples which contribute the most additional representative information when labeled in each iteration of the query strategy (showing the names and sequence numbers of the samples to be annotated). Additionally, in this phase, the model selects the unlabeled samples with the greatest predictive disparity by calculating the Wasserstein Distance, Least Confidence, Entropy Sampling, and Random Sampling. (2) Central line correction: The selected samples in previous stage are then used for domain expert correction of the system-generated tracheal central lines in each training round. (3) Update training dataset: When domain experts are involved in each epoch of the DL model's training iterations, they update the training dataset with greater precision after each epoch, thereby enhancing the trustworthiness of the 'black box' DL model and improving the performance of models. (4) Model training: Proposed HCI model is trained using the updated training dataset and an enhanced version of existing UNet. Experimental results validate the effectiveness of this Human-Computer Interaction-based approaches, demonstrating that our proposed WD-UNet, LC-UNet, UUNet, RS-UNet achieve comparable or even superior performance than the state-of-the-art DL models, such as WD-UNet with only 15 %-35 % of the training data, leading to substantial reductions (65 %-85 % reduction of annotation effort) in physician annotation time.

3.
Comput Struct Biotechnol J ; 24: 412-419, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38831762

RESUMEN

In anticipation of potential future pandemics, we examined the challenges and opportunities presented by the COVID-19 outbreak. This analysis highlights how artificial intelligence (AI) and predictive models can support both patients and clinicians in managing subsequent infectious diseases, and how legislators and policymakers could support these efforts, to bring learning healthcare system (LHS) from guidelines to real-world implementation. This report chronicles the trajectory of the COVID-19 pandemic, emphasizing the diverse data sets generated throughout its course. We propose strategies for harnessing this data via AI and predictive modelling to enhance the functioning of LHS. The challenges faced by patients and healthcare systems around the world during this unprecedented crisis could have been mitigated with an informed and timely adoption of the three pillars of the LHS: Knowledge, Data and Practice. By harnessing AI and predictive analytics, we can develop tools that not only detect potential pandemic-prone diseases early on but also assist in patient management, provide decision support, offer treatment recommendations, deliver patient outcome triage, predict post-recovery long-term disease impacts, monitor viral mutations and variant emergence, and assess vaccine and treatment efficacy in real-time. A patient-centric approach remains paramount, ensuring patients are both informed and actively involved in disease mitigation strategies.

4.
Curr Opin Struct Biol ; 85: 102778, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364679

RESUMEN

Since the onset of the COVID-19 pandemic in 2019, there has been a concerted effort to develop cost-effective, non-invasive, and rapid AI-based tools. These tools were intended to alleviate the burden on healthcare systems, control the rapid spread of the virus, and enhance intervention outcomes, all in response to this unprecedented global crisis. As we transition into a post-COVID era, we retrospectively evaluate these proposed studies and offer a review of the techniques employed in AI diagnostic models, with a focus on the solutions proposed for different challenges. This review endeavors to provide insights into the diverse solutions designed to address the multifaceted challenges that arose during the pandemic. By doing so, we aim to prepare the AI community for the development of AI tools tailored to address public health emergencies effectively.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Inteligencia Artificial , SARS-CoV-2 , Pandemias , Estudios Retrospectivos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38412076

RESUMEN

A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37204954

RESUMEN

Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed methods to automatically segment airways from computerized tomography (CT) images. However, some small-sized airway branches (e.g., bronchus and terminal bronchioles) significantly aggravate the difficulty of automatic segmentation by machine learning models. In particular, the variance of voxel values and the severe data imbalance in airway branches make the computational module prone to discontinuous and false-negative predictions, especially for cohorts with different lung diseases. The attention mechanism has shown the capacity to segment complex structures, while fuzzy logic can reduce the uncertainty in feature representations. Therefore, the integration of deep attention networks and fuzzy theory, given by the fuzzy attention layer, should be an escalated solution for better generalization and robustness. This article presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network (FANN) and a comprehensive loss function to enhance the spatial continuity of airway segmentation. The deep fuzzy set is formulated by a set of voxels in the feature map and a learnable Gaussian membership function. Different from the existing attention mechanism, the proposed channel-specific fuzzy attention addresses the issue of heterogeneous features in different channels. Furthermore, a novel evaluation metric is proposed to assess both the continuity and completeness of airway structures. The efficiency, generalization, and robustness of the proposed method have been proved by training on normal lung disease while testing on datasets of lung cancer, COVID-19, and pulmonary fibrosis.

7.
IEEE Trans Med Imaging ; 42(9): 2566-2576, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37030699

RESUMEN

As a pragmatic data augmentation tool, data synthesis has generally returned dividends in performance for deep learning based medical image analysis. However, generating corresponding segmentation masks for synthetic medical images is laborious and subjective. To obtain paired synthetic medical images and segmentations, conditional generative models that use segmentation masks as synthesis conditions were proposed. However, these segmentation mask-conditioned generative models still relied on large, varied, and labeled training datasets, and they could only provide limited constraints on human anatomical structures, leading to unrealistic image features. Moreover, the invariant pixel-level conditions could reduce the variety of synthetic lesions and thus reduce the efficacy of data augmentation. To address these issues, in this work, we propose a novel strategy for medical image synthesis, namely Unsupervised Mask (UM)-guided synthesis, to obtain both synthetic images and segmentations using limited manual segmentation labels. We first develop a superpixel based algorithm to generate unsupervised structural guidance and then design a conditional generative model to synthesize images and annotations simultaneously from those unsupervised masks in a semi-supervised multi-task setting. In addition, we devise a multi-scale multi-task Fréchet Inception Distance (MM-FID) and multi-scale multi-task standard deviation (MM-STD) to harness both fidelity and variety evaluations of synthetic CT images. With multiple analyses on different scales, we could produce stable image quality measurements with high reproducibility. Compared with the segmentation mask guided synthesis, our UM-guided synthesis provided high-quality synthetic images with significantly higher fidelity, variety, and utility ( by Wilcoxon Signed Ranked test).


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador
8.
IEEE J Biomed Health Inform ; 27(10): 5134-5142, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35290192

RESUMEN

Synthetic digital twins based on medical data accelerate the acquisition, labelling and decision making procedure in digital healthcare. A core part of digital healthcare twins is model-based data synthesis, which permits the generation of realistic medical signals without requiring to cope with the modelling complexity of anatomical and biochemical phenomena producing them in reality. Unfortunately, algorithms for cardiac data synthesis have been so far scarcely studied in the literature. An important imaging modality in the cardiac examination is three-directional CINE multi-slice myocardial velocity mapping (3Dir MVM), which provides a quantitative assessment of cardiac motion in three orthogonal directions of the left ventricle. The long acquisition time and complex acquisition produce make it more urgent to produce synthetic digital twins of this imaging modality. In this study, we propose a hybrid deep learning (HDL) network, especially for synthetic 3Dir MVM data. Our algorithm is featured by a hybrid UNet and a Generative Adversarial Network with a foreground-background generation scheme. The experimental results show that from temporally down-sampled magnitude CINE images (six times), our proposed algorithm can still successfully synthesise high temporal resolution 3Dir MVM CMR data (PSNR=42.32) with precise left ventricle segmentation (DICE=0.92). These performance scores indicate that our proposed HDL algorithm can be implemented in real-world digital twins for myocardial velocity mapping data simulation. To the best of our knowledge, this work is the first one investigating digital twins of the 3Dir MVM CMR, which has shown great potential for improving the efficiency of clinical studies via synthesised cardiac data.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Corazón/diagnóstico por imagen , Ventrículos Cardíacos , Velocidad del Flujo Sanguíneo , Imagen por Resonancia Magnética
9.
Onco Targets Ther ; 15: 251-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313528

RESUMEN

Anaplastic lymphoma kinase (ALK) gene rearrangement is an essential driver mutation identified in approximately 5% of non-small cell lung cancers (NSCLCs). The results of clinical trials have demonstrated the impressive efficacy of ALK tyrosine kinase inhibitors (ALK-TKIs). Besides the classic EML4-ALK fusions, a growing list of gene fusion partners for ALK in NSCLC have been identified with heterogeneous clinical responses to ALK-TKIs. However, a LOC101927967-ALK fusion has not been reported in NSCLC. Herein, a novel LOC101927967 downstream intergenic region ALK fusion in an early-stage patient with lung adenocarcinoma was first identified by next-generation sequencing (NGS) and verified by immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH), which might provide a treatment option for postoperative recurrence.

10.
Hemoglobin ; 45(3): 150-153, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34034591

RESUMEN

A novel mutation, HBB: c.393T>G on the HBB gene, was detected in two hypochromic microcytic anemia patients from Yulin, in the Guangxi Province of the People's Republic of China (PRC), by next-generation sequencing (NGS). It is a nonsense mutation causing a stop codon at amino acid 131 in exon 3 of the HBB gene. It was found in a heterozygous state in two patients who both presented severe anemia during pregnancy and moderate anemia before pregnancy; Hb A2 levels were slightly increased (more than 4.0%) in both patients. It was also detected in the father of one of the patients. This mutation was pathogenic, and caused the dominant thalassemia-like phenotypes in the two patients.


Asunto(s)
Globinas beta , Talasemia beta , Anemia Hipocrómica , China , Codón sin Sentido , Femenino , Humanos , Masculino , Globinas beta/genética , Talasemia beta/genética
11.
Cereb Cortex ; 31(2): 1259-1269, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33078190

RESUMEN

Functional connectivity (FC) matrices measure the regional interactions in the brain and have been widely used in neurological brain disease classification. A brain network, also named as connectome, could form a graph structure naturally, the nodes of which are brain regions and the edges are interregional connectivity. Thus, in this study, we proposed novel graph convolutional networks (GCNs) to extract efficient disease-related features from FC matrices. Considering the time-dependent nature of brain activity, we computed dynamic FC matrices with sliding windows and implemented a graph convolution-based LSTM (long short-term memory) layer to process dynamic graphs. Moreover, the demographics of patients were also used as additional outputs to guide the classification. In this paper, we proposed to utilize the demographic information as extra outputs and to share parameters among three networks predicting subject status, gender, and age, which serve as assistant tasks. We tested the performance of the proposed architecture in ADNI II dataset to classify Alzheimer's disease patients from normal controls. The classification accuracy, sensitivity, and specificity reach 90.0%, 91.7%, and 88.6%, respectively, on ADNI II dataset.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiología , Conectoma/clasificación , Conectoma/métodos , Bases de Datos Factuales/clasificación , Redes Neurales de la Computación , Factores de Edad , Humanos , Factores Sexuales
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(4): 531-537, 2020 Apr 30.
Artículo en Chino | MEDLINE | ID: mdl-32895137

RESUMEN

OBJECTIVE: To propose a coupled convolutional and graph convolutional network (CCGCN) model for diagnosis of Alzheimer's disease (AD) and its prodromal stage. METHODS: The disease-related brain regions generated by group-wise comparison were used as the input. The convolutional neural networks (CNNs) were used to extract disease-related features from different locations on brain magnetic resonance (MR) images. The generated features via the graph convolutional network (GCN) were processed, and graph pooling was performed to analyze the inherent relationship between the brain topology and the diagnosis task adaptively. Through ADNI dataset, we acquired the accuracy, sensitivity and specificity of the diagnosis tasks for AD and its prodromal stages, followed by an ablation study on the model structure. RESULTS: The CCGCN model outperformed the current state-of-the-art methods and showed a classification accuracy of 92.5% for AD with a sensitivity of 88.1% and a specificity of 96.0%. CONCLUSIONS: Based on the structural and topological features of the brain MR images, the proposed CCGCN model shows excellent performance in AD diagnosis and is expected to provide important assistance to physicians in disease diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
13.
Med Phys ; 47(11): 5531-5542, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32471017

RESUMEN

PURPOSE: The human brain has two cerebral hemispheres that are roughly symmetric and separated by a midline, which is nearly a straight line shown in axial computed tomography (CT) images in healthy subjects. However, brain diseases such as hematoma and tumors often cause midline shift, where the degree of shift can be regarded as a quantitative indication in clinical practice. To facilitate clinical evaluation, we need computer-aided methods to automate this quantification. Nevertheless, most existing studies focused on the landmark- or symmetry-based methods that provide only the existence of shift or its maximum distance, which could be easily affected by anatomical variability and large brain deformations. Intuitive results such as midline delineation or measurement are lacking. In this study, we focus on developing an automated and robust method based on the fully convolutional neural network for the delineation of midline in largely deformed brains. METHODS: We propose a novel regression-based line detection network (RLDN) for the robust midline delineation, especially in largely deformed brains. Specifically, to improve the robustness of delineation in largely deformed brains, we regard the delineation of the midline as the skeleton extraction task and then use the multiscale bidirectional integration module to acquire more representative features. Based on the skeleton extraction, we incorporate the regression task into it to delineate more accurate and continuous midline, especially in largely deformed brains. Our study utilized the public CQ 500 dataset (128 subjects) for training with hold-out validation on 61 subjects from a private cohort accrued from a local hospital. RESULTS: The mean line distance error and F1-score were 1.17 ± 0.72 mm with 0.78 on CQ 500 test set, and 4.15 ± 3.97 mm with 0.61 on the private dataset. Besides, significant differences (P < 0.05) were observed between our method and other comparative ones on these two datasets. CONCLUSIONS: This work provides a novel solution to acquire robust delineation of the midline, especially in largely deformed brains, and achieves state-of-the-art performance on the public and our private dataset, which makes it possible for automated diagnosis of relevant brain diseases in the future.


Asunto(s)
Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Humanos
14.
Brain Behav ; 10(2): e01499, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31893565

RESUMEN

OBJECT: Obsessive-compulsive disorder (OCD) is a mental disease in which people experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of OCD is achieved by using neuropsychological assessment metrics, which are often subjectively affected by psychologists and patients. In this study, we propose a classification model for OCD diagnosis using functional MR images. METHODS: Using functional connectivity (FC) matrices calculated from brain region of interest (ROI) pairs, a novel Riemann Kernel principal component analysis (PCA) model is employed for feature extraction, which preserves the topological information in the FC matrices. Hierarchical features are then fed into an ensemble classifier based on the XGBoost algorithm. Finally, decisive features extracted during classification are used to investigate the brain FC variations between patients with OCD and healthy controls. RESULTS: The proposed algorithm yielded a classification accuracy of 91.8%. Additionally, the well-known cortico-striatal-thalamic-cortical (CSTC) circuit and cerebellum were found as highly related regions with OCD. To further analyze the cerebellar-related function in OCD, we demarcated cerebellum into three subregions according to their anatomical and functional property. Using these three functional cerebellum regions as seeds for brain connectivity computation, statistical results showed that patients with OCD have decreased posterior cerebellar connections. CONCLUSIONS: This study provides a new and efficient method to characterize patients with OCD using resting-state functional MRI. We also provide a new perspective to analyze disease-related features. Despite of CSTC circuit, our model-driven feature analysis reported cerebellum as an OCD-related region. This paper may provide novel insight to the understanding of genetic etiology of OCD.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo , Conectoma/métodos , Trastorno Obsesivo Compulsivo , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/fisiopatología , Análisis de Componente Principal
15.
Artículo en Inglés | MEDLINE | ID: mdl-27510860

RESUMEN

The four experimental groups were carried out to test the response of crucian carp Carassius auratus to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected with taurine. Fish in group 2 had the highest ammonia and glutamine contents, and the lowest glutamate content in liver and brain. Serum superoxide dismutase (SOD), glutathione (GSH) activities, red cell count (RBC), white cell count (WBC), lysozyme (LYZ) activity, complement C3 content of fish in group 2 reflected the lowest, but malondialdehyde content was the highest. Importantly, serum SOD and GSH activites, RBC, WBC, and LYZ activity, C3, C4 and total immunoglobulin contents of fish in group 3 were significantly higher than those of fish in group 2. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing ROS generation, leading to malondialdehyde accumulation and immunosuppression of crucian carp. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder.


Asunto(s)
Acetatos/toxicidad , Carpa Dorada/metabolismo , Hiperamonemia/tratamiento farmacológico , Taurina/farmacología , Sistemas de Transporte de Aminoácidos/efectos de los fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Peces/efectos de los fármacos , Proteínas de Peces/metabolismo , Carpa Dorada/sangre , Carpa Dorada/inmunología , Hiperamonemia/inducido químicamente , Hiperamonemia/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos
16.
Fish Shellfish Immunol ; 56: 517-522, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27514785

RESUMEN

The four experimental groups were carried out to test the response of grass carp Ctenopharyngodon idella to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. Fish in group 2 had the highest ammonia content in the liver and brain, and alanine, arginine, glutamine, glutamate and glycine contents in liver. Brain alanine and glutamate of fish in group 2 were significantly higher than those of fish in group 1. Malondialdehyde content of fish in group 2 was the highest, but superoxide dismutase and glutathione activities were the lowest. Although fish in group 2 had the lowest red cell count and hemoglobin, the highest alkaline phosphatase, complement C3, C4 and total immunoglobulin contents appeared in this group. In addition, superoxide dismutase and glutathione activities, red cell count and hemoglobin of fish in group 3 were significantly higher than those of fish in group 2, but malondialdehyde content is the opposite. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and over-activation of immune response. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder.


Asunto(s)
Acetatos/toxicidad , Carpas/inmunología , Carpas/metabolismo , Taurina/farmacología , Aminoácidos/metabolismo , Amoníaco/toxicidad , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , Pruebas Hematológicas/veterinaria , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...