Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 1): 129676, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272420

RESUMEN

Aeromonas hydrophila is a serious human and animal co-pathogenic bacterium. Flagellum, a key virulence factor, is vital for bacterium tissue colonization and invasion. flgL is a crucial gene involved in the composition of flagellum. However, the impact of flgL on virulence is not yet clear. In this study, we constructed a stable mutant strain (△flgL-AH) using homologous recombination. The results of the attack experiments indicated a significant decrease in the virulence of △flgL-AH. The biological properties analysis revealed a significant decline in swimming ability and biofilm formation capacity in △flgL-AH and the transmission electron microscope results showed that the ∆flgL-AH strain did not have a flagellar structure. Moreover, a significant decrease in the adhesion capacity of ∆flgL-AH was found using absolute fluorescence quantitative polymerase chain reaction (PCR). The quantitative real-time PCR results showed that the expression of omp and the eight flagellum-related genes were down-regulated. In summary, flgL mutation leads to a reduction in pathogenicity possibly via decreasing the swimming ability, biofilm formation capacity and adhesion capacity, these changes might result from the down expression of omp and flagellar-related genes.


Asunto(s)
Aeromonas hydrophila , Proteínas Bacterianas , Flagelos , Animales , Humanos , Aeromonas hydrophila/genética , Aeromonas hydrophila/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Expresión Génica , Mutación , Natación , Virulencia/genética , Flagelos/genética , Flagelos/metabolismo
2.
Int J Biol Macromol ; 258(Pt 2): 129082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161026

RESUMEN

Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.


Asunto(s)
Aeromonas hydrophila , Proteínas , Animales , Humanos , Virulencia , Proteínas/metabolismo , Factores de Virulencia/metabolismo , Expresión Génica , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...