Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vasc Res ; 57(3): 113-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32097943

RESUMEN

The clinical administration of GABAergic medications leads to hypotension which has classically been attributed to the modulation of neuronal activity in the central and peripheral nervous systems. However, certain types of peripheral smooth muscle cells have been shown to express GABAA receptors, which modulate smooth muscle tone, by the activation of these chloride channels on smooth muscle cell plasma membranes. Limited prior studies demonstrate that non-human large-caliber capacitance blood vessels mounted on a wire myograph are responsive to GABAA ligands. We questioned whether GABAA receptors are expressed in human resistance arteries and whether they modulate myogenic tone. We demonstrate the novel expression of GABAA subunits on vascular smooth muscle from small-caliber human omental and mouse tail resistance arteries. We show that GABAA receptors modulate both plasma membrane potential and calcium responses in primary cultured cells from human resistance arteries. Lastly, we demonstrate functional physiologic modulation of myogenic tone via GABAA receptor activation in human and mouse arteries. Together, these studies demonstrate a previously unrecognized role for GABAA receptors in the modulation of myogenic tone in mouse and human resistance arteries.


Asunto(s)
Arterias/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Epiplón/irrigación sanguínea , Receptores de GABA-A/metabolismo , Cola (estructura animal)/irrigación sanguínea , Resistencia Vascular , Vasoconstricción , Animales , Arterias/efectos de los fármacos , Señalización del Calcio , Células Cultivadas , Femenino , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Vasodilatación
2.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L264-L275, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800261

RESUMEN

Duodenogastroesophageal reflux (DGER) is associated with chronic lung disease. Bile acids (BAs) are established markers of DGER aspiration and are important risk factors for reduced post-transplant lung allograft survival by disrupting the organ-specific innate immunity, facilitating airway infection and allograft failure. However, it is unknown whether BAs also affect airway reactivity. We investigated the acute effects of 13 BAs detected in post-lung-transplant surveillance bronchial washings (BW) on airway contraction. We exposed precision-cut slices from human and mouse lungs to BAs and monitored dynamic changes in the cross-sectional luminal area of peripheral airways using video phase-contrast microscopy. We also used guinea pig tracheal rings in organ baths to study BA effects in proximal airway contraction induced by electrical field stimulation. We found that most secondary BAs at low micromolar concentrations strongly and reversibly relaxed smooth muscle and inhibited peripheral airway constriction induced by acetylcholine but not by noncholinergic bronchoconstrictors. Similarly, secondary BAs strongly inhibited cholinergic constrictions in tracheal rings. In contrast, TC-G 1005, a specific agonist of the BA receptor Takeda G protein-coupled receptor 5 (TGR5), did not cause airway relaxation, and Tgr5 deletion in knockout mice did not affect BA-induced relaxation, suggesting that this receptor is not involved. BAs inhibited acetylcholine-induced inositol phosphate synthesis in human airway smooth muscle cells overexpressing the muscarinic M3 receptor. Our results demonstrate that select BAs found in BW of patients with lung transplantation can affect airway reactivity by inhibiting the cholinergic contractile responses of the proximal and peripheral airways, possibly by acting as antagonists of M3 muscarinic receptors.


Asunto(s)
Acetilcolina/metabolismo , Ácidos y Sales Biliares/farmacología , Broncoconstricción/efectos de los fármacos , Pulmón/fisiopatología , Animales , Broncoconstrictores/farmacología , Ácido Quenodesoxicólico/farmacología , Estimulación Eléctrica , Cobayas , Humanos , Fosfatos de Inositol/biosíntesis , Pulmón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/metabolismo , Serotonina/farmacología , Ácido Taurolitocólico/farmacología , Tráquea/efectos de los fármacos
3.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L287-L295, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747299

RESUMEN

TMEM16A (anoctamin 1) is an important calcium-activated chloride channel in airway smooth muscle (ASM). We have previously shown that TMEM16A antagonists such as benzbromarone relax ASM and have proposed TMEM16A antagonists as novel therapies for asthma treatment. However, TMEM16A is also expressed on airway epithelium, and TMEM16A agonists are being investigated as novel therapies for cystic fibrosis. There are theoretical concerns that agonism of TMEM16A on ASM could lead to bronchospasm, making them detrimental as airway therapeutics. The TMEM16A agonist Eact induced a significant contraction of human ASM and guinea pig tracheal rings in an ex vivo organ bath model. Pretreatment with two different TMEM16A antagonists, benzbromarone or T16Ainh-A01, completely attenuated these Eact-induced contractions. Pretreatment with Eact alone augmented the maximum acetylcholine contraction. Pretreatment of A/J mice in vivo with nebulized Eact caused an augmentation of methacholine-induced increases in airway resistance measured by the forced oscillatory technique (flexiVent). Pretreatment with the TMEM16A antagonist benzbromarone significantly attenuated methacholine-induced increases in airway resistance. In in vitro cellular studies, TMEM16A was found to be expressed more abundantly in ASM compared with epithelial cells in culture (8-fold higher in ASM). Eact caused an increase in intracellular calcium in human ASM cells that was completely attenuated by pretreatment with benzbromarone. Eact acutely depolarized the plasma membrane potential of ASM cells, which was attenuated by benzbromarone or nifedipine. The TMEM16A agonist Eact modulates ASM contraction in both ex vivo and in vivo models, suggesting that agonism of TMEM16A may lead to clinically relevant bronchospasm.


Asunto(s)
Anoctamina-1/agonistas , Anoctamina-1/metabolismo , Pulmón/metabolismo , Tono Muscular , Músculo Liso/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Acetilcolina/farmacología , Animales , Anoctamina-1/genética , Hiperreactividad Bronquial/fisiopatología , Broncoconstricción/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Cobayas , Humanos , Fosfatos de Inositol/biosíntesis , Cloruro de Metacolina/farmacología , Contracción Muscular/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Proteínas de Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L82-L93, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284927

RESUMEN

Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM. To demonstrate the functionality of the OPN receptors, we performed wire myography of ex vivo ASM from mouse and human upper airways. Blue light-mediated relaxation of ACh-preconstricted airways was intensity and wavelength dependent (maximum relaxation at 430-nm blue light) and was inhibited by blockade of the large-conductance calcium-activated potassium channels with iberiotoxin. We further implicated OPN receptors as key mediators in functional photorelaxation by demonstrating increased relaxation in the presence of a G protein receptor kinase 2 inhibitor or an OPN chromophore (9- cis retinal). We corroborated these responses in peripheral airways of murine precision-cut lung slices. This is the first demonstration of photorelaxation in ASM via an OPN receptor-mediated pathway.


Asunto(s)
Luz , Relajación Muscular , Miocitos del Músculo Liso/metabolismo , Opsinas de Bastones/metabolismo , Tráquea/metabolismo , Animales , Humanos , Ratones , Miocitos del Músculo Liso/citología , Transducción de Señal , Tráquea/citología
5.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L406-L415, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28473323

RESUMEN

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0 ) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation (P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice (P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration (P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


Asunto(s)
Asma/genética , Pulmón/patología , Neumonía/genética , Receptores de GABA-A/genética , Animales , Asma/inmunología , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/inmunología , Células Th2/inmunología
6.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L812-L821, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336810

RESUMEN

Asthma is a common disorder characterized, in part, by airway smooth muscle (ASM) hyperresponsiveness. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed on airway nerve fibers that modulates afferent signals, resulting in cough, and potentially bronchoconstriction. In the present study, the TRPV1 transcript was detected by RT-PCR in primary cultured human ASM cells, and the TRPV1 protein was detected in ASM of human trachea by immunohistochemistry. Proximity ligation assays suggest that TRPV1 is expressed in the sarcoplasmic reticulum membrane of human ASM cells in close association with sarco/endoplasmic reticulum Ca2+-ATPase-2. In guinea pig tracheal ring organ bath experiments, the TRPV1 agonist capsaicin led to ASM contraction, but this contraction was significantly attenuated by the sodium channel inhibitor bupivacaine (n = 4, P < 0.05) and the neurokinin-2 receptor antagonist GR-159897 (n = 4, P < 0.05), suggesting that this contraction is neutrally mediated. However, pretreatment of guinea pig and human ASM in organ bath experiments with the TRPV1 antagonist capsazepine inhibited the maintenance phase of an acetylcholine-induced contraction (n = 4, P < 0.01 for both species). Similarly, capsazepine inhibited methacholine-induced contraction of peripheral airways in mouse precision-cut lung slice (PCLS) experiments (n = 4-5, P < 0.05). Although capsazepine did not inhibit store-operated calcium entry in mouse ASM cells in PCLS (n = 4-7, P = nonsignificant), it did inhibit calcium oscillations (n = 3, P < 0.001). These studies suggest that TRPV1 is expressed on ASM, including the SR, but that ASM TRPV1 activation does not play a significant role in initiation of ASM contraction. However, capsazepine does inhibit maintenance of contraction, likely by inhibiting calcium oscillations.


Asunto(s)
Calcio/metabolismo , Músculo Liso/metabolismo , Canales Catiónicos TRPV/metabolismo , Tráquea/metabolismo , Acetilcolina/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cobayas , Humanos , Inmunohistoquímica , Cloruro de Metacolina/farmacología , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales Catiónicos TRPV/genética , Tráquea/efectos de los fármacos
7.
Lung ; 194(3): 401-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26989055

RESUMEN

INTRODUCTION: γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that ß-agonists would affect GABA release from airway epithelial cells through activation of PKA. METHODS: C57/BL6 mice received a pretreatment of a ß-agonist or vehicle (PBS), followed by methacholine or PBS. Bronchoalveolar lavage (BAL) was collected and the amount of GABA was quantified using HPLC mass spectrometry. For in vitro studies, cultured BEAS-2B human airway epithelial cells were loaded with (3)H-GABA. (3)H-GABA released was measured during activation and inhibition of PKA and tyrosine kinase signaling pathways. RESULTS: ß-agonist pretreatment prior to methacholine challenge attenuated in vivo GABA release in mouse BAL and (3)H-GABA release from depolarized BEAS-2B cells. GABA release was also decreased in BEAS-2B cells by increases in cAMP but not by Epac or tyrosine kinase activation. CONCLUSION: ß-agonists decrease GABA release from airway epithelium through the activation of cAMP and PKA. This has important therapeutic implications as ß-agonists and GABA are important mediators of both mucus production and airway smooth muscle tone.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Terbutalina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Activadores de Enzimas/farmacología , Glutamato Descarboxilasa/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Propranolol/farmacología , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Mucosa Respiratoria/citología , Rifabutina/análogos & derivados , Rifabutina/farmacología , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/análisis
8.
Am J Physiol Lung Cell Mol Physiol ; 305(9): L625-34, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23997176

RESUMEN

Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.


Asunto(s)
Asma/fisiopatología , Bronquios/fisiología , Canales de Cloruro/fisiología , Familia de Multigenes/fisiología , Miocitos del Músculo Liso/fisiología , Proteínas de Neoplasias/fisiología , Tráquea/fisiología , Animales , Anoctamina-1 , Anoctaminas , Asma/patología , Benzbromarona/farmacología , Bronquios/citología , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Enfermedad Crónica , Cobayas , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Miocitos del Músculo Liso/citología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Técnicas de Placa-Clamp , Cultivo Primario de Células , Taninos/farmacología , Tráquea/citología
9.
Respir Res ; 14: 89, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24004608

RESUMEN

BACKGROUND: Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. METHODS: The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. RESULTS: Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. CONCLUSIONS: These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.


Asunto(s)
Bronquios/metabolismo , Broncodilatadores/metabolismo , Músculo Liso/metabolismo , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Acetilcolina/farmacología , Animales , Bronquios/citología , Bronquios/efectos de los fármacos , Broncoconstricción/efectos de los fármacos , Células Cultivadas , Cromanos/farmacología , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Cobayas , Humanos , Masculino , Modelos Animales , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Receptores de Dopamina D1/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 304(3): L191-7, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23204068

RESUMEN

Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the absence of epithelium-derived GABA contributes to greater airway smooth muscle force. Messenger RNA encoding glutamic acid decarboxylase (GAD) 65/67 was quantitatively measured in human airway epithelium and smooth muscle. HPLC quantified GABA levels in guinea pig tracheal ring segments under basal or stimulated conditions with or without epithelium. The role of endogenous GABA in the maintenance of an acetylcholine contraction in human airway and guinea pig airway smooth muscle was assessed in organ baths. A 37.5-fold greater amount of mRNA encoding GAD 67 was detected in human epithelium vs. airway smooth muscle cells. HPLC confirmed that guinea pig airways with intact epithelium have a higher constitutive elution of GABA under basal or KCl-depolarized conditions compared with epithelium-denuded airway rings. Inhibition of GABA transporters significantly suppressed KCl-mediated release of GABA from epithelium-intact airways, but tetrodotoxin was without effect. The presence of intact epithelium had a significant GABAergic-mediated prorelaxant effect on the maintenance of contractile tone. Airway epithelium is a predominant cellular source of endogenous GABA in the airway and contributes significant prorelaxant GABA effects on airway smooth muscle force.


Asunto(s)
Tono Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Mucosa Respiratoria/metabolismo , Tráquea/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Acetilcolina/farmacología , Animales , Agonistas Colinérgicos/farmacología , Cromatografía Líquida de Alta Presión , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/farmacología , Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Cobayas , Humanos , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Tono Muscular/fisiología , Músculo Liso/efectos de los fármacos , Técnicas de Cultivo de Órganos , ARN Mensajero/biosíntesis , Mucosa Respiratoria/efectos de los fármacos , Tetrodotoxina/farmacología , Tráquea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA